Точки и прямые связаны и о них можно сказать следующее:
Прямую a можно провести через любые две точки A и B, но при этом она — прямая, будет единственно возможной прямой которой принадлежат эти две точки.
Объяснение:
Точка это некоторое положение в пространстве, двухмерном или трехмерном. Точке присущи некоторые координаты. Чтобы обозначить точку на чертеже, используют закрашенный кружок диаметром 1-2 мимллиметра. Обозначают точки большими латинскими буквами - например A, B, C
Прямая является бесконечной линией. У нее нет начала и нет конца. Для того чтобы изобразить часть прямой необходимо приложить линейку к листу бумаги и провести линию вдоль нее карандашом. Чтобы обозначить прямую на чертеже используют маленькие латинские буквы — например a, b, c.
Геометрическое место точек
Геометрическое место точек
Точки расположенные в пространстве можно соединить каким либо образом, тогда говорят о некотором геометрическом месте точек которые они образуют. Например точки, соединенные плавной дугой окружности — образуют геометрическое место — окружность. Также говорят, что эти точки принадлежат некоторой линии или плоскости.
2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
Аксиома прямой
Точки и прямые связаны и о них можно сказать следующее:
Прямую a можно провести через любые две точки A и B, но при этом она — прямая, будет единственно возможной прямой которой принадлежат эти две точки.
Объяснение:
Точка это некоторое положение в пространстве, двухмерном или трехмерном. Точке присущи некоторые координаты. Чтобы обозначить точку на чертеже, используют закрашенный кружок диаметром 1-2 мимллиметра. Обозначают точки большими латинскими буквами - например A, B, C
Прямая является бесконечной линией. У нее нет начала и нет конца. Для того чтобы изобразить часть прямой необходимо приложить линейку к листу бумаги и провести линию вдоль нее карандашом. Чтобы обозначить прямую на чертеже используют маленькие латинские буквы — например a, b, c.
Геометрическое место точек
Геометрическое место точек
Точки расположенные в пространстве можно соединить каким либо образом, тогда говорят о некотором геометрическом месте точек которые они образуют. Например точки, соединенные плавной дугой окружности — образуют геометрическое место — окружность. Также говорят, что эти точки принадлежат некоторой линии или плоскости.
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня