Дана функция y=x^2-x^3.
Для определения промежутков возрастания и убывания функции и
точек экстремума находим производную заданной функции.
y' = 2x -3x² = x(2 - 3x). Приравниваем нулю:
x(2 - 3x) = 0. Отсюда первый корень х = 0.
Далее: 2 - 3x = 0, x = 2/3.
Найдены критические точки, которые могут быть экстремумами:
х_1 = 0 и х_2 = √(2/3).
Определяем их свойства по знакам производной:
х = -1 0 0,5 (2/3) 1
y' = -5 0 0,25 0 -1 . Получаем ответ:
а) промежуток возрастания (производная положительна) (0; 2/3),
промежутки убывания функции (-∞; 0) и ((2/3); +∞).
б) точки экстремума: максимум ((2/3); 0,148148) и минимум (0; 0).
Найдем производную функции.
у = x² + 8x + 1.
у' = 2х + 8.
Найдем нули производной:
у' = 0; 2х + 8 = 0; 2х = -8; х = -4.
Определим знаки производной на каждом промежутке:
(-∞; -4) пусть х = -5; у'(-5) = 2 * (-5) + 8 = -2 (минус).
(-4; +∞) пусть х = 0; у'(0) = 2 * 0 + 8 = 8 (плюс).
Следовательно, на промежутке (-∞; -4) функция убывает, на промежутке (-4; +∞) функция возрастает. Точка х = -4 - это точка минимума.
Вычислим наименьшее значение функции:
у(-4) = (-4)² + 8 * (-4) + 1 = 16 - 32 + 1 = -15.
Дана функция y=x^2-x^3.
Для определения промежутков возрастания и убывания функции и
точек экстремума находим производную заданной функции.
y' = 2x -3x² = x(2 - 3x). Приравниваем нулю:
x(2 - 3x) = 0. Отсюда первый корень х = 0.
Далее: 2 - 3x = 0, x = 2/3.
Найдены критические точки, которые могут быть экстремумами:
х_1 = 0 и х_2 = √(2/3).
Определяем их свойства по знакам производной:
х = -1 0 0,5 (2/3) 1
y' = -5 0 0,25 0 -1 . Получаем ответ:
а) промежуток возрастания (производная положительна) (0; 2/3),
промежутки убывания функции (-∞; 0) и ((2/3); +∞).
б) точки экстремума: максимум ((2/3); 0,148148) и минимум (0; 0).
Найдем производную функции.
у = x² + 8x + 1.
у' = 2х + 8.
Найдем нули производной:
у' = 0; 2х + 8 = 0; 2х = -8; х = -4.
Определим знаки производной на каждом промежутке:
(-∞; -4) пусть х = -5; у'(-5) = 2 * (-5) + 8 = -2 (минус).
(-4; +∞) пусть х = 0; у'(0) = 2 * 0 + 8 = 8 (плюс).
Следовательно, на промежутке (-∞; -4) функция убывает, на промежутке (-4; +∞) функция возрастает. Точка х = -4 - это точка минимума.
Вычислим наименьшее значение функции:
у(-4) = (-4)² + 8 * (-4) + 1 = 16 - 32 + 1 = -15.