Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность:
D(f)∈(-∞;∞)
Асимптот нет,непериодическая
f(-x)=-x³+12x=-(x³-12x)
f(x)=-f(-x) нечетная
x=0 y=0
y=0 x(x²-12)=0 x=0 x=2√3 x=-2√3
(0;0);(2√3;0);(-2√3;0)-точки пересечения с осями
f`(x)=3x²-12=3(x-2)(x+2)=0
x=2 x=-2
+ _ +
(-2)(2)
возр max убыв min возр
уmax=-8+24=16
ymin=8-24=-16
f``(x)=6x=0
x=0 y=0
(0;0)-точка перегиба
- +
(0)
выпукл вверх вогнута вниз