Постройте график функции f(x)=x²-4x+3. Пользуясь графиком, найдите;
1) промежуток возрастания функции ;
2) множество решений неравенства x²-4x+3≤0.
Объяснение:
f(x)=x²-4x+3 , парабола, ветви вверх.
f(x)=x²-4x+4-1,
f(x)=(x-2)²-1. Данную параболу можно получить сдвигом параболы у=х² на
- "2" единицы по ох вправо;
- "1" единицу по оу вниз..
А можно "не париться" и найти координаты вершины и точки пересечения с ох и оу (можно для более точного построения взять еще две точки, если хочется) : координаты вершины х₀=4:2=2 , у₀=-1.
Если х=0 , то у=3.
Если у=0 , то х=1, х=3.
1) Функция возрастает при х≥2 ( это там, где виртуальный человечек, двигаясь в положительном направлении, двигается вверх по параболе) .
2) Решением данного неравенства x²-4x+3≤0 будут те значения х на графике , у которых у≤0 ( часть параболы выделена красным цветом)⇒x∈[1 ;3]
Объяснение:
Метод противоположного фактора
{y-x=1 // *(-2)
{2y+x=-4
{-2y+2x=-2
(+){2y+x=-4
.
3x=-6
X=-2 podstawiam do (1)równania y-x=1
Y-(-2)=1
Y+2=1
Y=1-2
Y=-1
OTBET : ( -2;-1)
.
Метод сложения
{y-x=1
(+){2y+x=-4
.
3y=-3
Y=-1 podstawiam do (1) równania y-x=1
-1-x=1
-x=1+1
X=-2
OTBET: (-2;-1)
.
Метод замещения
{y-x=1
{2y+x=-4
{y=x+1
{2(x+1)+x=-4
{y=x+1
{2x+2+x=-4
{y=x+1
{3x=-6
{y=x+1
{x=-2
Y=-1
{x=-2
OTBET : (-2;-1)
Другой путь
:
y-x=1 == > y=x+1
2y+x=-4 == > 2y=-x-4 == > y=-1/2 x-2
X+1=-1/2 x-2 // * 2
2x+2=-x-4
3x=-6
X=-2 podstawiam do równania y-x=1
y-(-2)=1
y+2=1
y=1-2
y=-1
OTBET: (-2;-1)
Постройте график функции f(x)=x²-4x+3. Пользуясь графиком, найдите;
1) промежуток возрастания функции ;
2) множество решений неравенства x²-4x+3≤0.
Объяснение:
f(x)=x²-4x+3 , парабола, ветви вверх.
f(x)=x²-4x+4-1,
f(x)=(x-2)²-1. Данную параболу можно получить сдвигом параболы у=х² на
- "2" единицы по ох вправо;
- "1" единицу по оу вниз..
А можно "не париться" и найти координаты вершины и точки пересечения с ох и оу (можно для более точного построения взять еще две точки, если хочется) : координаты вершины х₀=4:2=2 , у₀=-1.
Если х=0 , то у=3.
Если у=0 , то х=1, х=3.
1) Функция возрастает при х≥2 ( это там, где виртуальный человечек, двигаясь в положительном направлении, двигается вверх по параболе) .
2) Решением данного неравенства x²-4x+3≤0 будут те значения х на графике , у которых у≤0 ( часть параболы выделена красным цветом)⇒x∈[1 ;3]