Було виконано п’ять серій по 100 підкидань монети в кожній. Результати досліду занесене в таблицю. Перемалюйте її в зошит та обчисліть відносну частоту події А в кожній із серій.
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
x(x+1)/(x+3)(x+1) - 4(x+3) /(x+1)(x+3) = 2
(x(x+1)-4(x+3)) /(x+1)(x+3) = 2
(x²+x-4x-12)/(x+1)(x+3) = 2
(x²-3x-12)/(x²+3x+x+3) = 2
(x²-3x-12)/(x²+4x+3) = 2
(x²-3x-12)/(x²+4x+3) - 2 = 0
(x²-3x-12)/(x²+4x+3) - 2*(x²+4x+3)/(x²+4x+3) = 0
(x²-3x-12)/(x²+4x+3) - (2x²+8x+6)/(x²+4x+3) = 0
(x²-3x-12)-(2x²+8x+6) /(x²+4x+3) = 0
(x²-3x-12-2x²-8x-6)/(x²+4x+3) = 0
(-x²-11x-18)/(x²+4x+3) = 0 |*(x²+4x+3) ОДЗ: (x²+4x+3)≠0
(-x²-11x-18)*(x²+4x+3) = 0
-x²-11x-18=0 |*(-1)
x²+11x+18=0
D=121-72= 49
x1,2 = (-11±7)/2
x1= -2 x2= -9 ⇒ -2 - наименьший корень уравнения