В итоге x = +-p/3 + 2pn, x = p/4 + pn. Так как нас интересуют значения х на промежутке [3p/2;3p], т.е 1.5р...3р, то подходят 2p - p/3, 2p + p/4, 2p + p/3.
ответ: 2p + p/3, 2p - p/3, 2p + p/4.
2) sinx+1/1-cos2x=sinx+1/1+cos(p/2+x) (s+1)/(2*s*s) = (s + 1)/(1 - s)
ОДЗ: sin(x) <> 0 => x <> pn sin(x) <> 1 => x <> p/2 + 2pn
s + 1 = 0 => sin(x) = -1 => x = 2pn - p/2 2s*s = 1 - s 2s*s + s - 1 = 0
В итоге: x = 2pn - p/2, x = (-1)^n*(p/6) + pn. Причем x <> pn, x <> p/2 + 2pn. По условию нужно выбрать корни на промежутке [-3p/2;-p/2], т. е. от -1.5р до -0.5р.
2pn - p/2: при n = 1: x = -1.5p, но так как x <> p/2 + 2pn, этот корень не подходит. при n = 0: x = -0.5p.
1) ОДЗ: cos(x) <> 0 => x <> p/2 + 2pn
Домножим обе части равенства на cos(x) <> 0:
2с^2 - 2sc + s - c = 0
(c - s)(2c - 1) = 0
cos(x) = sin(x) => 1 - tg(x) = 0 => tg(x) = 1 => x = p/4 + pn
2c - 1 = 0
cos(x) = 0.5 => x = +-p/3 + 2pn
В итоге x = +-p/3 + 2pn, x = p/4 + pn.
Так как нас интересуют значения х на промежутке
[3p/2;3p], т.е 1.5р...3р, то подходят 2p - p/3, 2p + p/4, 2p + p/3.
ответ: 2p + p/3, 2p - p/3, 2p + p/4.
2) sinx+1/1-cos2x=sinx+1/1+cos(p/2+x)
(s+1)/(2*s*s) = (s + 1)/(1 - s)
ОДЗ:
sin(x) <> 0 => x <> pn
sin(x) <> 1 => x <> p/2 + 2pn
s + 1 = 0 => sin(x) = -1 => x = 2pn - p/2
2s*s = 1 - s
2s*s + s - 1 = 0
Решим как квадратное уравнение:
s1 = 2/4 = 0.5 => sin(x) = 0.5 => x = (-1)^n*(p/6) + pn
s2 = -4/4 = -1 (такие корни уже были)
В итоге: x = 2pn - p/2, x = (-1)^n*(p/6) + pn.
Причем x <> pn, x <> p/2 + 2pn.
По условию нужно выбрать корни на промежутке [-3p/2;-p/2], т. е. от -1.5р до -0.5р.
2pn - p/2:
при n = 1: x = -1.5p, но так как x <> p/2 + 2pn, этот корень не подходит.
при n = 0: x = -0.5p.
(-1)^n*(p/6) + pn:
при n = -1: x = -p - p/6.
ответ: x = -0.5p, x = -p - p/6.
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.