Прогрессии принадлежат члены 2 и 4. Если между ними ничего нет, то это прогрессия из чётных чисел. Если есть ровно одно промежуточное число, то это прогрессия из всех натуральных чисел, начиная с двойки. Покажем, что ничего другого быть не может. Если между 2 и 4 есть более одного числа, то разность прогрессии является рациональным, но не целым числом. Запишем её в виде несократимой дроби: d=m/n, где n>1. Тогда все члены прогрессии будут рациональными числами с ограниченными в совокупностями знаменателями (делителями n). С другой стороны, при возведении в квадрат числa a2=2+d=2n+mn, которое также записано в виде несократимой дроби, получится несократимая дробь со знаменателем n2, и это противоречит сказанному выше.
пусть х - одно число, а у - второе, тогда имеем систему уравнений
Из первого уравнения получаем х1=-5 и х2=3. Подставляем во второе, получаем у1=-16 у2=-8 ответ: 2 решения (-5, -16) и (3, -8)
2.Обозначение: х – первое число; у – второе число Система: (х+у)/(у-х) = 8 х^2 – y^2 =128 Из первого уравнения у = (7/9)х Подставляем во второе уравнение. Получим два корня квадратного уравнения: х1 = 24; х2 = - 24. Соответственно, у1 = 56/3; у2 = -56/3 ответ: задача имеет два решения: х1 = 24; у1 = 56/3; и х2 = - 24; у2 = -56/3.
Покажем, что ничего другого быть не может. Если между 2 и 4 есть более одного числа, то разность прогрессии является рациональным, но не целым числом. Запишем её в виде несократимой дроби: d=m/n, где n>1. Тогда все члены прогрессии будут рациональными числами с ограниченными в совокупностями знаменателями (делителями n).
С другой стороны, при возведении в квадрат числa a2=2+d=2n+mn, которое также записано в виде несократимой дроби, получится несократимая дробь со знаменателем n2, и это противоречит сказанному выше.
пусть х - одно число, а у - второе, тогда имеем систему уравнений
Из первого уравнения получаем х1=-5 и х2=3. Подставляем во второе, получаем у1=-16 у2=-8
ответ: 2 решения (-5, -16) и (3, -8)
2.Обозначение: х – первое число; у – второе число
Система:
(х+у)/(у-х) = 8
х^2 – y^2 =128
Из первого уравнения у = (7/9)х
Подставляем во второе уравнение.
Получим два корня квадратного уравнения: х1 = 24; х2 = - 24.
Соответственно, у1 = 56/3; у2 = -56/3
ответ: задача имеет два решения:
х1 = 24; у1 = 56/3;
и
х2 = - 24; у2 = -56/3.