Це завдання з логіки .По колу , довжина якого 900 м , рухаються два тіла в одному напрямку.Через кожні 30 хв вони зустрічаються . Визначте швидкість кожного тіла, якщо швидкість першого в 1,5 раза більше за швидкість другого.
Возьмем за x- скорость 2 туриста. Тогда скорость первого будет x+2. Напишем время, за которое они добрались. время первого 40/(х+2) время второго 40/х
Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1 приводим к общему знаменателю:
= 1 Заметим, что x не равен 0, икс не равен -2. По свойству пропорций мы приходим к такому уравнению: 80=x^2+2x x^2+2x-80=0 По формуле четного корня находим дискриминант: D=p^2-ac=1+80=81; Корень из D=9 x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень) x2=-1+9=8 Итак, скорость второго туриста 8+2=10. ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
Советую проверить решение! могут быть мелкие ошибки.
Решение: Для начала ищем производную функции: y'=3x^2+12x+9 Затем приравниваем производную к нулю: 3x^2+12x+9=0 Ищем дискриминант: Д=36 Ищем корни квадратного уравнения: x1=-1; x2=-3 Находим значения функции на концах промежутка (если промежуток с квадратными скобками) и в критических точках производной т.е. в корнях квадратного уравнения: y(-2)=-8+24-18+8=6 y(-1)= -1+6-9+8=4 y(0)=8 y(-3) не принадлежит заданному промежутку Выбираем наименьшее значение. Если у вас скобки в задании всё таки круглые, то ответ будет 4, а если скобки квадратные, то наименьшим всё равно остается 4.
Напишем время, за которое они добрались.
время первого 40/(х+2)
время второго 40/х
Из условия ясно, что первый доехал быстрее, чем второй, значит мы можем записать уравнение:
- = 1
приводим к общему знаменателю:
= 1
Заметим, что x не равен 0, икс не равен -2.
По свойству пропорций мы приходим к такому уравнению:
80=x^2+2x
x^2+2x-80=0
По формуле четного корня находим дискриминант:
D=p^2-ac=1+80=81; Корень из D=9
x1=-1-9=-10 (скорость не может быть отрицательной, поэтому посторонний корень)
x2=-1+9=8
Итак, скорость второго туриста 8+2=10.
ответ: скорость первого туриста 10 км/ч; скорость второго туриста 8км/ч
Решение:
Для начала ищем производную функции:
y'=3x^2+12x+9
Затем приравниваем производную к нулю:
3x^2+12x+9=0
Ищем дискриминант:
Д=36
Ищем корни квадратного уравнения:
x1=-1; x2=-3
Находим значения функции на концах промежутка (если промежуток с квадратными скобками) и в критических точках производной т.е. в корнях квадратного уравнения:
y(-2)=-8+24-18+8=6
y(-1)= -1+6-9+8=4
y(0)=8
y(-3) не принадлежит заданному промежутку
Выбираем наименьшее значение. Если у вас скобки в задании всё таки круглые, то ответ будет 4, а если скобки квадратные, то наименьшим всё равно остается 4.