а) 0.36; б) 0.91; в) 0.55
Объяснение:
а) ровно одно попадание
(первый выстрел удачный, второй и третий нет либо
второй удачный, первый и третий нет либо
третий удачный, первый и второй нет)
0.4*(1-0.5)*(1-0.7)+(1-0.4)*0.5*(1-0.7)+(1-0.4)*(1-0.5)*0.7=
0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=
0.06+0.09+0.21=0.36
б) хотя бы одно попадание
(1 - ни разу не промахнулся)
1-(1-0.4)*(1-0.5)*(1-0.7)=1-0.6*0.5*0.3=1-0.09=0.91
в) ( два выстрела удачный, третий нет, либо
все три удачные)
0.4*0.5*(1-0.7)+(1-0.4)*0.5*0.7+0.4*(1-0.5)*0.7+0.4*0.5*0.7=
0.4*0.5*0.3+0.6*0.5*0.7+0.4*0.5*0.7+0.4*0.5*0.7=
0.06+0.21+0.14+0.14=0.55
(0.91-0.36=0.55)
0<x<4/3
числитель является положительным (это число 7, от x не завист)
надо найти значения x, при которых знаменатель положителен:
4 × x - 3 × x**2 > 0
4 × x - 3 × x**2 = x × (4 - 3×x)
рассмотрим 2 случая:
1. Оба положительные ( и x, и (4 - 3×x)): одновременно должно выполняться:
x > 0 и 4 - 3 × x > 0
x > 0 и -3×x > -4
x > 0 и x < 4/3
в этом случае решение существует. А именно,
2. Оба отрицательные: одновременно должно выполняться:
x < 0 и 4 - 3×x < 0
x < 0 и -3 × x < - 4
x< 0 и x> 4/3
в этом случае решения не существует.
Оставляем первый случай.
а) 0.36; б) 0.91; в) 0.55
Объяснение:
а) ровно одно попадание
(первый выстрел удачный, второй и третий нет либо
второй удачный, первый и третий нет либо
третий удачный, первый и второй нет)
0.4*(1-0.5)*(1-0.7)+(1-0.4)*0.5*(1-0.7)+(1-0.4)*(1-0.5)*0.7=
0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=
0.06+0.09+0.21=0.36
б) хотя бы одно попадание
(1 - ни разу не промахнулся)
1-(1-0.4)*(1-0.5)*(1-0.7)=1-0.6*0.5*0.3=1-0.09=0.91
в) ( два выстрела удачный, третий нет, либо
все три удачные)
0.4*0.5*(1-0.7)+(1-0.4)*0.5*0.7+0.4*(1-0.5)*0.7+0.4*0.5*0.7=
0.4*0.5*0.3+0.6*0.5*0.7+0.4*0.5*0.7+0.4*0.5*0.7=
0.06+0.21+0.14+0.14=0.55
(0.91-0.36=0.55)
0<x<4/3
Объяснение:
числитель является положительным (это число 7, от x не завист)
надо найти значения x, при которых знаменатель положителен:
4 × x - 3 × x**2 > 0
4 × x - 3 × x**2 = x × (4 - 3×x)
рассмотрим 2 случая:
1. Оба положительные ( и x, и (4 - 3×x)): одновременно должно выполняться:
x > 0 и 4 - 3 × x > 0
x > 0 и -3×x > -4
x > 0 и x < 4/3
в этом случае решение существует. А именно,
0<x<4/3
2. Оба отрицательные: одновременно должно выполняться:
x < 0 и 4 - 3×x < 0
x < 0 и -3 × x < - 4
x< 0 и x> 4/3
в этом случае решения не существует.
Оставляем первый случай.