Целые числа a и b таковы что у квадратных трехчленов х²+aх+b и х²+bх+1100 есть общий корень являющийся простым числом. найдите a. укажите все возможные варианты.
Нет, нельзя. Если попарно вытаскивать шары и класть их в прибор. То по крайней мере на 50 раз находим пару радиоактивных шаров. Тогда останется 51-2=49 радиоактивных шаров и столько же нерадиоактивных. Далее один из них откладываем, а попарно со вторым проверяем остальные шары. Может случиться так, что будут попадаться попеременно радиоактивные и нерадиоактивные шары, тогда на 50+95=145 шаге мы выявим 2+48=50 или 2+47=49 радиоактивных шаров и соответственно 47 или 48 нерадиоактивных. Необходимо будет выполнить еще минимум одну проверку.
Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:
1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.
2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).
Тогда останется 51-2=49 радиоактивных шаров и столько же нерадиоактивных.
Далее один из них откладываем, а попарно со вторым проверяем остальные шары. Может случиться так, что будут попадаться попеременно радиоактивные и нерадиоактивные шары, тогда на 50+95=145 шаге мы выявим 2+48=50 или 2+47=49 радиоактивных шаров и соответственно 47 или 48 нерадиоактивных. Необходимо будет выполнить еще минимум одну проверку.
Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:
1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.
2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).