Целый день
сразу ответ можете писать без обьяснений
1
функции заданы формулами f(x)=x2+1 и g(x)=x2−1. сравни f(-7) и g(4).
2
заполни таблицу, если дана функция s(a)=a2 .
эта функция характеризует площадь квадрата (s) , если известна сторона квадрата (a) .
s — аргумент
a — аргумент нужно выбрать либо а аргумент либо s
сторона a , см 3 4 5 7 8
площадь s(a) , см²
з
дана функция y=−t+2. при каких значениях t значение функции равно −8?
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
(шт./час) (час) (шт.)
Первый х 5 5х
Второй 26-х 3 3(26-х)
Всего - - 108
Составляем уравнение:
5х+3(26-х)=108
5х+78-3х=108
2х=108-78
2х=30
х=30:2
х=15(шт./час)-изготавливал первый рабочий
26-15=11(шт./час)-изготавливал второй рабочий
х=30:2
х=15(шт./час)-изготавливал первый рабочий
26-15=11(шт./час)-изготавливал второй рабочий