Центр кола, описаного навколо трикутника, е центром кола, вписанного в цей трикутник, якщо трикутник "" A. туттокутний. В. прямокутний. B. рівносторонній. г. рівнобедрений зі сторонами 4, 41, 2.
Сделаем рисунок к задаче. Примем во внимание, что ∠ abd совсем не обязательно должен быть равен 90°, и на самом деле он не 90°, хотя и похож, потому при решении проигнорируем его.
Треугольник abm- равнобедренный.
В нем ∠ amb=∠ mad как углы при пересечении параллельных прямых секущей, а ∠ bam=∠ mad по построению.
Опустим из вершины b высоту bh.
ah=ab·sin(30)=25·1/2=12,5 bh=ab*sin(60)=(25√3):2 hd=(25+15)-12,5=27,5 bd= √(bh²+hd²)=√(25√3):2)²+(27,5 )²= √(1875/4+3025/4)=√4900/4=35 см ( можно и по теореме косинусов, результат должен быть одинаковым)
Функция определена и непрерывна на всей числовой оси.
Находим производную и приравниваем её к нулю: y'=3*x²+12*x=3*x*(x+4)=0. Решая это уравнение, находим две критические точки x=0 и x=-4. Если x<-4, то y'>0, поэтому на интервале (-∞; -4) функция возрастает. Если -4<x<0, то y'<0, поэтому на интервале (-4; 0) функция убывает. Если x>0, то y'>0, так что на интервале (0; ∞) функция возрастает. Отсюда следует, что точка x=-4 является точкой максимума, а точка x=0 - точкой минимума функции. Однако эти экстремумы - локальные; наибольшего и наименьшего значения на всей области определения функция не имеет.
Примем во внимание, что ∠ abd совсем не обязательно должен быть равен 90°, и на самом деле он не 90°, хотя и похож, потому при решении проигнорируем его.
Треугольник abm- равнобедренный.
В нем ∠ amb=∠ mad как углы при пересечении параллельных прямых секущей, а ∠ bam=∠ mad по построению.
Опустим из вершины b высоту bh.
ah=ab·sin(30)=25·1/2=12,5
bh=ab*sin(60)=(25√3):2 hd=(25+15)-12,5=27,5 bd= √(bh²+hd²)=√(25√3):2)²+(27,5 )²= √(1875/4+3025/4)=√4900/4=35 см ( можно и по теореме косинусов, результат должен быть одинаковым)
mn=bh=(25√3):2
Рассмотрим ᐃ amn
mn противолежит углу 30 градусов.
отсюда биссектриса am=2 mn=2·(25√3):2=25√3
Меньшая диагональ параллеограмма
bd= √ =35 см
Биссектриса
mn= 25√3 см
Вообще сам списал, не могу быть уверен что на 100% верно)
ответ: x=-4, x=0.
Объяснение:
Функция определена и непрерывна на всей числовой оси.
Находим производную и приравниваем её к нулю: y'=3*x²+12*x=3*x*(x+4)=0. Решая это уравнение, находим две критические точки x=0 и x=-4. Если x<-4, то y'>0, поэтому на интервале (-∞; -4) функция возрастает. Если -4<x<0, то y'<0, поэтому на интервале (-4; 0) функция убывает. Если x>0, то y'>0, так что на интервале (0; ∞) функция возрастает. Отсюда следует, что точка x=-4 является точкой максимума, а точка x=0 - точкой минимума функции. Однако эти экстремумы - локальные; наибольшего и наименьшего значения на всей области определения функция не имеет.