Многочлен третьей степени имеет вид f(x)=ax³+bx²+cx+d f(0)=d=0 f(1)=a+b+c=3 f(2)=8a+4b+2c=0 f(3)=27a+9b+3c=0 Теперь надо решить систему из трех последних уравнений: Из 1-го ⇒c=3-a-b Подставляем во 2-ое и получаем после приведения подобных: 3a-b+3=0 ⇒b=3a+3⇒ c=3-a-3a-3=-4a Подставляем c и b в 3-е уравнение и получается a=-4/7 ⇒b=3a+3=9/7 и c=-4a=-4*(-4/7)=16/7 Получилось: a=-4/7 b=9/7 c=16/7 d=0 Многочлен имеет вид: (-4/7)x³+9/7x²+16/7=0 Или 4x³-9x²-16=0 Здесь следовательно коэффициенты будут 4, -9, -16 и 0. Выбирай любое решение, можно оставить первое.
f(0)=d=0
f(1)=a+b+c=3
f(2)=8a+4b+2c=0
f(3)=27a+9b+3c=0
Теперь надо решить систему из трех последних уравнений:
Из 1-го ⇒c=3-a-b
Подставляем во 2-ое и получаем после приведения подобных: 3a-b+3=0 ⇒b=3a+3⇒ c=3-a-3a-3=-4a
Подставляем c и b в 3-е уравнение и получается a=-4/7 ⇒b=3a+3=9/7 и c=-4a=-4*(-4/7)=16/7
Получилось:
a=-4/7
b=9/7
c=16/7
d=0
Многочлен имеет вид:
(-4/7)x³+9/7x²+16/7=0
Или
4x³-9x²-16=0
Здесь следовательно коэффициенты будут 4, -9, -16 и 0. Выбирай любое решение, можно оставить первое.
|1-|1-x||=0,5значит
1-|1-x|=0,5 или 1-|1-x|=-0,5
разбираем 1-|1-x|=0,5
0,5=|1-x| значит
1-x= 0,5 или 1-x=-0,5 получаем X1= 0,5 и x2 = 1,5
разбираем 1-|1-x|=-0,5
1,5=|1-x|, значит
1-x= 1,5 или 1-х=-1,5 значит x3=-0,5 и x4 = 2,5
Проверям
х1=0,5 |1-|1-x1||=0,5 , |1-|1-0,5||=0,5 , |1-|0,5||=0,5 , |1-0,5|=0,5 , |0,5|=0,5 верно
х2=1,5 |1-|1-x2||=0,5 , |1-|1-1,5||=0,5 , |1-|1,5||=0,5 , |1-1,5|=0,5 , |-0,5|=0,5 верно
х3=-0,5 |1-|1-x3||=0,5 , |1-|1-(-0,5)||=0,5 , |1-|1,5||=0,5 , |1-1,5|=0,5 , |-0,5|=0,5 верно
х4=2,5 |1-|1-x4||=0,5 , |1-|1-2,5||=0,5 , |1-|-1,5||=0,5 , |1-1,5|=0,5 , |-0,5|=0,5 верно
Итого x1+x2+x3+x4=0,5+1,5+(-0,5)+2,5=4