встречи будет одинаковым поэтому просто t), теперь второй велосипедист у него скорость V2, а путь S2, но сказано что первый проехал на 6 км меньше, значит второй по отношению к пути первого велосипедиста проехал на 6 км больше!, отсюда S2=S1+6. Время за которое второй доехал до места встречи t=(S1+6)/V2. Теперь смотрим что происходило после встречи: первый проехал путь второго (а это S2=S1+6) за время 2 часа 24 мин (переводим в минуты 144 мин), значит 144=(S1+6)/V1. Второй в свою очередь проехал путь первого S1 за 1 час и 40 мин (это 100 мин), значит 100=S1/V2. Вот все условия записаны. Теперь из последних двух выражений выводим: V1=(S1+6)/144 и V2=S1/100. Эти данные подставляем в первые выражения и так как t у них одинаковое, то приравниваем их:S1/V1=(S1+6)/V2, подставляем V1 и V2: 144хS1/(S1+6)=100х(S1+6)/S1, из этого получаем 144хS1*2=100х(S1+6)*2, далее 12*2хS1*2=10*2х(S1+6)*2 избавляемся от квадратов получаем 12S1=10х(S1+6) отсюда 2S1=60, S1=30 км. Вот и ответ.
‥・Здравствуйте, tima0604! ・‥
• ответ:
Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)
• Как и почему?
Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:
• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).
• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.
• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.
• 4. Привести подобные члены 3√21 и 2√21: -11+√21.
• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.
‥・С уважением, Ваша GraceMiller! :) ・‥