Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Пусть искомое трехзначное число ABC=100A+10B+C Тогда возможные двузначные числа: AB+AC+BC+CA+CB+BA=100A+10B+C 10A+B+10A+C+10B+C+10C+B+10B+A=100A+10B+C 22A+22B+22C=100A+10B+C 78A=12B+21C 26A=4B+7C 26A - четное число вне зависимости от А, 4В - четное вне зависимости от В, 7С - в зависимости от С может быть четным и нечетным. Чтобы сумма была четной, нужно сложить два четных числа (в нашем случае), значит 7С должно быть четным. Это возможно, когда С - четное.
Например, С=2, A=1, B=3 => 132=13+12+32+31+23+21 C=4, A=2, B=6 => 264=26+24+64+62+46+42 C=6, A=3, B=9 => 396=39+36+96+93+69+63 Это примеры удачных чисел.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Тогда возможные двузначные числа:
AB+AC+BC+CA+CB+BA=100A+10B+C
10A+B+10A+C+10B+C+10C+B+10B+A=100A+10B+C
22A+22B+22C=100A+10B+C
78A=12B+21C
26A=4B+7C
26A - четное число вне зависимости от А, 4В - четное вне зависимости от В,
7С - в зависимости от С может быть четным и нечетным.
Чтобы сумма была четной, нужно сложить два четных числа (в нашем случае), значит 7С должно быть четным. Это возможно, когда С - четное.
Например,
С=2, A=1, B=3 => 132=13+12+32+31+23+21
C=4, A=2, B=6 => 264=26+24+64+62+46+42
C=6, A=3, B=9 => 396=39+36+96+93+69+63
Это примеры удачных чисел.