Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:
1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.
2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).
Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:
1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.
2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).
Объяснение:
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним.
2. При делении степеней с одинаковыми основаниями основание остаётся прежним, а из показателя числителя вычитают показатель знаменателя.
3.При возведении степени в степень основание остаётся прежним а показатели перемножают.
4. При возведении в степень произведения, возводят в эту степень каждый множитель и результаты перемножают.
5. Степень числа а не равного нулю с нулевым показателем равна 1