Cosx=t t²-(3+2p)t+6p=0 D=(3-2p)² Это уравнение всегда имеет корни, да. Но в основном уравнении у нас не t, а cosx. cosx принимает значения от -1 до 1. Значит для того чтобы основное уравнение не имело корней, нужно чтобы все корни уравнения с t лежали вне промежутка [-1; 1]. Иными словами чтобы парабола задаваемая этим уравнением располагалась так как показано на прекрасных рисунках, которые я приложил. 1ый. случай задается системой {f(-1)>0 {f(1)>0 {x0>1 2ой: {f(-1)<0 {f(1)<0 3ий: {f(-1)>0 {f(1)>0 {x0<-1 Решаем эти системы и получаем p∈(-oo;-1/2) U (1/2;+oo).
t²-(3+2p)t+6p=0
D=(3-2p)²
Это уравнение всегда имеет корни, да. Но в основном уравнении у нас не t, а cosx. cosx принимает значения от -1 до 1. Значит для того чтобы основное уравнение не имело корней, нужно чтобы все корни уравнения с t лежали вне промежутка [-1; 1]. Иными словами чтобы парабола задаваемая этим уравнением располагалась так как показано на прекрасных рисунках, которые я приложил.
1ый. случай задается системой
{f(-1)>0
{f(1)>0
{x0>1
2ой:
{f(-1)<0
{f(1)<0
3ий:
{f(-1)>0
{f(1)>0
{x0<-1
Решаем эти системы и получаем p∈(-oo;-1/2) U (1/2;+oo).
а)3a-15b = 3(a-5b);
б)5x-2xy = x(5-2y);
в)7mn+7mk = 7m(n+k);
г)24x²y+36xy² = 12xy(2x+3y);
д)-4x^8+18x^15 = 2x^8(9x^7-2);
е)3x⁴-6x³+9x^5 = 3x³(x-2+3x²).
N°2
а)xy-xz+my-mz = x(y-z)+m(y-z) = (x+m)(y-z);
б)4a-4b+ca-cb = 4(a-b)+c(a-b) = (4+c)(a-b);
в)а²+10а+25 = (a+5)²;
г)4х²-4х+1 = (2x-1)²;
д)х²-100 = x²-10² = (x-10)(x+10);
е)36-81b² = 6²-(9b)² = (6-9b)(6+9b);
ж)9х²-64у² = (3x)²-(8y)² = (3x-8y)(3x+8y);
з)m^8-n⁴ = (m⁴)²-(n²)² = (m⁴-n²)(m⁴+n²).
№3
а)(4х-3)²-5² = 16x²-24x+9-25 = 16x²-24x-16 = 8(2x²-3x-2);
б)(3х-5)²-(х+3)² = 9x²-30x+25-(x²+6x+9) = 9x²-30x+25-x²-6x-9 = 8x² - 36x + 16 = 4(2x²-9x+4). ^ – это степень, ставлю потому что выше 4 степени поставить не позволяют возможности планшета.