Несколько теорем к решению данной задачи : 1. В равнобедренном тр-нике боковые стороны равны; 2. Высота в равнобедренном тр-ке делит основание пополам. 3) Теорема Пифагора. Дано: АВС - равноб.тр-ник АВ = ВС = 17см ВН (высота) = 8см Найти: АС Решение: ВН делит основание на отрезки АН и НС; АН=НС Рассмотрим треугольник АВН АВ -гипотенуза, ВН и АН - катеты. АВН -прямоугольный тр-ник По т. Пифагора определим АН АН = YAB^2 - BH^2 AH = Y 17^2 - 8^2 = Y 289 - 64 = Y225 = 15 AC = 2*15 = 30 ответ: АС = 30 см.
Можно построить, к примеру, полином. Два нуля полинома означают, что он должен быть как минимум второй степени, чтобы иметь два корня. Два корня имеет квадратная парабола. Попробуем её построить. y = (x-2)(x-5) = x²-5x-2x+10 = x²-7x+10 Поскольку коэффициент при х положительный, ветви параболы направлены вверх, а между корнями 2 и 5 она уходит в минус. Что и требуется по условию. Минимум достигается в точке, где производная функции равна нулю. y' = 2x-7 = 0 ⇒ x = 7/2 = 3.5, при этом у = 3.5² - 7×3.5+10 = -2.25. Точка с минимумом имеет координаты (3.5;-2.25). График дан во вложении.
1. В равнобедренном тр-нике боковые стороны равны;
2. Высота в равнобедренном тр-ке делит основание пополам.
3) Теорема Пифагора.
Дано: АВС - равноб.тр-ник
АВ = ВС = 17см
ВН (высота) = 8см
Найти: АС
Решение:
ВН делит основание на отрезки АН и НС; АН=НС
Рассмотрим треугольник АВН
АВ -гипотенуза, ВН и АН - катеты.
АВН -прямоугольный тр-ник
По т. Пифагора определим АН
АН = YAB^2 - BH^2
AH = Y 17^2 - 8^2 = Y 289 - 64 = Y225 = 15
AC = 2*15 = 30
ответ: АС = 30 см.
Два корня имеет квадратная парабола. Попробуем её построить.
y = (x-2)(x-5) = x²-5x-2x+10 = x²-7x+10
Поскольку коэффициент при х положительный, ветви параболы направлены вверх, а между корнями 2 и 5 она уходит в минус. Что и требуется по условию.
Минимум достигается в точке, где производная функции равна нулю.
y' = 2x-7 = 0 ⇒ x = 7/2 = 3.5, при этом у = 3.5² - 7×3.5+10 = -2.25.
Точка с минимумом имеет координаты (3.5;-2.25).
График дан во вложении.