Через какое время после наступления нового года стрелки часов в первый раз составят прямой угол? нужно пояснение к ответу, почему именно через такое время
Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.
3) 20°
Объяснение:
Подсказка
Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.
Раскрываем: sin2x = 2*sinx*cosx.
-2cos(x-π) = -2cos(π-x) = +2cosx.
Подставляем: 2*sinx*cosx + √2*sinx = √2 + 2cosx.
В левой части вынесем за скобки sinx:
sinx(2cosx + √2) = 2cosx + √2.
Правую часть перенесём влево и вынесем её за скобки.
(2cosx + √2)(sinx - 1) = 0.
Отсюда имеем:
2cosx + √2 = 0,
cosx = -√2/2, x = 2πk +- (3π/4), k ∈ Z.
sinx - 1 = 0.
sinx = 1, x = (π/2) + 2πk, k ∈ Z.
На заданном промежутке [π; (5π/2)] есть только 2 решения:
х = (5π/4) и х = 5π/2).