1)sin250=sin(360-90)=-sin90=-1 2)это формула двойного тангенса получается просто нужно найти тангенс 60 это табличное значение корень из 3 3)sin=4/5 cos=-3/5 там по основному тригонометрическому тождеству находишь косинус так как угол 2 четверти то по окружности смотришь косинус угла второй четверти всегда отрицательный поэтому -3/5 ctg a/2 = 1+cos/sin ctg a/2= 1+(-3/5)/4/5=2/5/4/5=1/2 sin(a+b)=sin a*cos b+ cos a sin b sin(a-b)=sin a* cos b- cos a*sin b sin a*cos b+ cos a sin b-sin b+ cos a/sin a* cos b- cos a*sin b+sin b*cos a там все вроде сократится
ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn