Дополняем вопрос недостающими буквами - В. РЕШЕНИЕ 1. Всего событий - n. N(A) = 8 - благоприятных для А - дано. N(B) = n - N(A) = 17 - 8 = 9 - благоприятных для В - ОТВЕТ р(А) = 0,32 - вероятность А - дано. р(В) = 1 - 0,32 = 0,68 - вероятность события В - ОТВЕТ 2. Всего вариантов на кости - граней - n =6. Событие А - выпало четное - A={2,4,6} - m(А) = 3 Событие В - больше 3 - B={4,5,6} - m(B) = 3 Событие АВ - пересечение множеств А∩В = {4;6} - m(AB) = 2. Вероятность АВ по классической формуле p(AB) = m(AB)/n = 2/6 = 1/3 - вероятность - ОТВЕТ (≈33,3%) 3. Всего для каждого броска вариантов - n = 6. Событий А - меньше 3 - A={1,2} - m(A) = 2, p(A) = 2/6 = 1/3 Событие В - больше 4 - B={5,6} - m(B) = 2, p(B) = 2/6 = 1/3 Элементарные события: 1,5 и 1,6 и 2,5 и 2,6 - четыре варианта. Событие А*В - "И" А "И" В - произведение вероятностей каждого. p(A*B) = 1/3 * 1/3 = 1/9 - вероятность - ОТВЕТ (≈11,1%) ИЛИ Для двух бросков = n = 6² = 36, m(AB) = 4, p(A*B) = 4/36 = 1/9 - ОТВЕТ 4. Вероятность несовместных событий ("ИЛИ") равна сумме вероятностей каждого - называется "ИЛИ" U "ИЛИ" V. Р(U+V) = р(U)+р(V) = 0,3 + 0,5 = 0,8 - вероятность - ОТВЕТ
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
РЕШЕНИЕ
1.
Всего событий - n.
N(A) = 8 - благоприятных для А - дано.
N(B) = n - N(A) = 17 - 8 = 9 - благоприятных для В - ОТВЕТ
р(А) = 0,32 - вероятность А - дано.
р(В) = 1 - 0,32 = 0,68 - вероятность события В - ОТВЕТ
2.
Всего вариантов на кости - граней - n =6.
Событие А - выпало четное - A={2,4,6} - m(А) = 3
Событие В - больше 3 - B={4,5,6} - m(B) = 3
Событие АВ - пересечение множеств А∩В = {4;6} - m(AB) = 2.
Вероятность АВ по классической формуле
p(AB) = m(AB)/n = 2/6 = 1/3 - вероятность - ОТВЕТ (≈33,3%)
3.
Всего для каждого броска вариантов - n = 6.
Событий А - меньше 3 - A={1,2} - m(A) = 2, p(A) = 2/6 = 1/3
Событие В - больше 4 - B={5,6} - m(B) = 2, p(B) = 2/6 = 1/3
Элементарные события:
1,5 и 1,6 и 2,5 и 2,6 - четыре варианта.
Событие А*В - "И" А "И" В - произведение вероятностей каждого.
p(A*B) = 1/3 * 1/3 = 1/9 - вероятность - ОТВЕТ (≈11,1%)
ИЛИ
Для двух бросков = n = 6² = 36, m(AB) = 4, p(A*B) = 4/36 = 1/9 - ОТВЕТ
4.
Вероятность несовместных событий ("ИЛИ") равна сумме вероятностей каждого - называется "ИЛИ" U "ИЛИ" V.
Р(U+V) = р(U)+р(V) = 0,3 + 0,5 = 0,8 - вероятность - ОТВЕТ