K - первое число (k+1) - второе (k+2) - третье (k+3) - четвертое число 1) Находим разность квадратов первых двух последовательных натуральных чисел (k+1)² - k² = k²+2k+1-k² = (2k+1) 2) Находим разность квадратов следующих двух последовательных натуральных чисел (k+3)² - (k+2)² = k²+6k+9-(k² +4k+4)= k²+6k+9-k² -4k-4 = = (2k+5) 3) Сумма полученных разностей квадратов равна 38, получаем уравнение: (2k+1)+(2k+5) = 38 4k + 6 = 38 4k=38-6 4k=32 k = 32 : 4 k = 8 Итак, получаем: 8 - первое число 8+1=9 - второе 8+2=10 - третье 8+3=11 - четвертое число ответ: 8; 9; 10; 11.
x(4+0.5x)=0
x=0 4+0.5x=0
0.5x=-4
x=-4/0.5
x=-8
x1=0 x2=-8
2) 4x-16x^2=0
4x(1-4x)=0
x=0 1-4x=0
-4x=-1
4x=1
x=1/4
x=0.25
x1=0 x2=0.25
3) x^2-5=0
x^2=5
x1=+√5
x2=-√5
4) 15x^2=0
x^2=0/15
x^2=0
x=0
(k+1) - второе
(k+2) - третье
(k+3) - четвертое число
1) Находим разность квадратов первых двух последовательных натуральных чисел
(k+1)² - k² = k²+2k+1-k² = (2k+1)
2) Находим разность квадратов следующих двух последовательных натуральных чисел
(k+3)² - (k+2)² = k²+6k+9-(k² +4k+4)= k²+6k+9-k² -4k-4 =
= (2k+5)
3) Сумма полученных разностей квадратов равна 38, получаем уравнение:
(2k+1)+(2k+5) = 38
4k + 6 = 38
4k=38-6
4k=32
k = 32 : 4
k = 8
Итак, получаем:
8 - первое число
8+1=9 - второе
8+2=10 - третье
8+3=11 - четвертое число
ответ: 8; 9; 10; 11.