Четыре числа образуют геометрическую прогрессию. Если к ним прибавить соответственно 1, 7, 9 и 15, то получим четыре числа, образующие арифметическую прогрессию. Определи числа, образующие геометрическую прогрессию.
Для построения графика надо задать несколько значений переменной х и подсчитать соответствующие значения у. По полученным координатам нанести точки на график, соединив их плавной кривой. y(x)=2tan(x/2−π/4)Таблица точекx y = -4.0 0.744 -3.5 1.387 -3.0 2.305 -2.5 3.99 -2.0 9.176 -1.5 -56.477 -1.0 -6.816 -0.5 -3.372 0 -2 0.5 -1.186 1.0 -0.587 1.5 -0.071 2.0 0.436 2,5 1,0 3,0 1,735 3.5 2.885 4.0 5.375.
По полученным координатам нанести точки на график, соединив их плавной кривой.
y(x)=2tan(x/2−π/4)Таблица точекx y = -4.0 0.744 -3.5 1.387 -3.0 2.305 -2.5 3.99 -2.0 9.176 -1.5 -56.477 -1.0 -6.816 -0.5 -3.372 0 -2 0.5 -1.186 1.0 -0.587 1.5 -0.071 2.0 0.436 2,5 1,0 3,0 1,735 3.5 2.885 4.0 5.375.
у=2х-7 искомое уравнение.
Объяснение:
Составьте уравнение вида y = kx+ b, график которого проходит через данные точки C (-3;-13) и D (1;-5)
Формула, при которой можно построить уравнение прямой по двум точкам:
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁)
C (-3;-13) и D (1;-5)
х₁= -3 у₁= -13
х₂=1 у₂= -5
Подставляем данные в формулу:
(х-(-3)/(1-(-3)=(у-(-13)/(-5)-(-13)
(х+3)/4=(у+13)/8 перемножаем крест-накрест, как в пропорции:
8(х+3)=4(у+13)
8х+24=4у+52
-4у= -8х+52-24
-4у= -8х+28
4у=8х-28/4
у=2х-7 искомое уравнение.