1. 25/36*x^4+5*x^2+9
2. 1/64*x^2-x^2+16*n^2
3. 4/49*m^2+4*m*n^3+49*n^6
4. 1/36*p^6+n*p^3+9*n^2
5. 9/25*c^3+6*c^3*t^4+25*t^8
6. x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
Объяснение:
Следуя формулам (a+b)^2=a^2+2*a*b+b^2
(a-b)^2=a^2-2*a*b+b^2
1. (5/6x^2+3)^2=(5^2)/(6^2)x^4+2*3*5/6x^2+3^2=25/36 x^4+5x^2+9
2. (1/8x^2-4n)^2=1/64x^4-2*4*1/8 x^2+(4n)^2=1/64*x^2-x^2+16n^2
3. (2/7m+7n^3)^2=4/49 m^2+2*2/7*7 *m*n^3+49n^6= 4/49*m^2+4*m*n^3+49*n^6
4. (1/6 p^3+3n)^2=1/36 p^6+2*1/6*3*p^3*n+9n^2=1/36*p^6+n*p^3+9*n^2
5. (3/5 c^3+5t^4)^2=9/25*c^6+2*5t^4*3/5*c^3+25*t^8= 9/25*c^3+6*c^3*t^4+25*t^8
6. (x^2y-kn^2)^2=x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
1. 25/36*x^4+5*x^2+9
2. 1/64*x^2-x^2+16*n^2
3. 4/49*m^2+4*m*n^3+49*n^6
4. 1/36*p^6+n*p^3+9*n^2
5. 9/25*c^3+6*c^3*t^4+25*t^8
6. x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
Объяснение:
Следуя формулам (a+b)^2=a^2+2*a*b+b^2
(a-b)^2=a^2-2*a*b+b^2
1. (5/6x^2+3)^2=(5^2)/(6^2)x^4+2*3*5/6x^2+3^2=25/36 x^4+5x^2+9
2. (1/8x^2-4n)^2=1/64x^4-2*4*1/8 x^2+(4n)^2=1/64*x^2-x^2+16n^2
3. (2/7m+7n^3)^2=4/49 m^2+2*2/7*7 *m*n^3+49n^6= 4/49*m^2+4*m*n^3+49*n^6
4. (1/6 p^3+3n)^2=1/36 p^6+2*1/6*3*p^3*n+9n^2=1/36*p^6+n*p^3+9*n^2
5. (3/5 c^3+5t^4)^2=9/25*c^6+2*5t^4*3/5*c^3+25*t^8= 9/25*c^3+6*c^3*t^4+25*t^8
6. (x^2y-kn^2)^2=x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z