Решите уравнение методом разложения на множители
1) √x⁵-3√x³-18√x= 0 ОДЗ : x≥0
x²√x -3x√x -18√x =0⇔ √x(x² -3x -18) =0 ⇔x(x -6)(x+3) =0
x =0 ; x =6 ; x = - 3 ∉ ОДЗ →посторонний корень.
2) ⁴√х⁹-2⁴√х⁵-15⁴√х=0 ОДЗ : x≥0
x²(⁴√х -2x⁴√х-15⁴√х) =0 ⇔ - 16⁴√х *x² =0 ⇒ x =0
Решите уравнение методом введения новой переменной
3) √(x²+1 - 2x )- 6√(x-1) = 7
√(x - 1 )² - 6√(x-1) = 7 ; замена : t =√(x-1) ≥ 0
t² -6t -7 = 0 ⇒ по Виету t₁ = 7 ; t₂= - 1 →посторонний
или t₁/₂ = 3 ± 4 * * * √D₁ = √(3² -(-7) ) =√(9+7) =√16 =4; D₁ =D/4 * * *
√(x-1) =7 ⇔x- 1 =7² ⇒ x= 50 .
* * *ИЛИ t² -6t -7 =0 t² -7t +t -7 =0 ⇔t(t -7) +(t -7) =0⇔(t -7)(t+ 1) =0 * * *
4) √(x²-4x+4) - 6=5√(2 -x)
√(2-x)² - 6 = 5√(2 -x) замена : t =√(2-x) ≥ 0
t² -5t -6 =0 ⇒ по Виету t₁ = 6 ; t₂= - 1 →посторонний
√(2 -x) =6 ⇔2 - x =6²⇒ x = 2 -36 = -34 .
Решите уравнение, используя функционально-графические методы
5) 2ˣ = 6-x
у₁ =2ˣ → (возрастающая показательная функция: 2 >1 ) ;
{ ...(- 2 ; 1/4) , (- 1 ; 1/2) , (0 ; 1) , (1; 2) , (2 ; 4) ; ...} ∈ графику
y₂ = - x +6 → ( ||y = kx+b || убывающая линейная функция: k = - 1 < 0 ).
{ (0 ;6) , (6 ; 0) . || (2 ; 4) } ∈ графику y₂
* * * графики постройте самостоятельно * * *
Пересечением графиков функций у₁ и y₂ получается ответ
x = 2 .
6) (1/3)ˣ= x + 4
у₁ = (1/3)ˣ → (убывающая показательная функция: 0<1/3<1)
{ ... (- 2 ; 9 ) , (-1; 3) , (0 ; 1) ; (1; 1/3) , (2 ; 1/9) ; ...} ∈ графику
у₂ = x + 4→ ( возрастающая линейная функция : k = 1 > 0)
{ ( - 4 ; 0) ; (0; 4) . || (-1 ; 3) }
x = -1 .
Объяснение:
0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bgathered%7D2%29%5C%3B%5C%3B%7B%5Clog_%7Bx-3%7D%7D%28x%2B1%29%5Chfill%5C%5C%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%2B1%3E0%5Chfill%5C%5Cx-3%3E0%5Chfill%5C%5Cx-3%5Cne1%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5CLeftrightarrow%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%3E-1%5Chfill%5C%5Cx%3E3%5Chfill%5C%5Cx%5Cne4%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5Chfill%5C%5C%5Cboxed%7Bx%5Cin%283%3B%2B%5Cinfty%29%7D%5Chfill%5C%5C%5Cend%7Bgathered%7D%5C%5D" title="\[\begin{gathered}2)\;\;{\log_{x-3}}(x+1)\hfill\\\left\{\begin{gathered}x+1>0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]">
Решите уравнение методом разложения на множители
1) √x⁵-3√x³-18√x= 0 ОДЗ : x≥0
x²√x -3x√x -18√x =0⇔ √x(x² -3x -18) =0 ⇔x(x -6)(x+3) =0
x =0 ; x =6 ; x = - 3 ∉ ОДЗ →посторонний корень.
2) ⁴√х⁹-2⁴√х⁵-15⁴√х=0 ОДЗ : x≥0
x²(⁴√х -2x⁴√х-15⁴√х) =0 ⇔ - 16⁴√х *x² =0 ⇒ x =0
Решите уравнение методом введения новой переменной
3) √(x²+1 - 2x )- 6√(x-1) = 7
√(x - 1 )² - 6√(x-1) = 7 ; замена : t =√(x-1) ≥ 0
t² -6t -7 = 0 ⇒ по Виету t₁ = 7 ; t₂= - 1 →посторонний
или t₁/₂ = 3 ± 4 * * * √D₁ = √(3² -(-7) ) =√(9+7) =√16 =4; D₁ =D/4 * * *
√(x-1) =7 ⇔x- 1 =7² ⇒ x= 50 .
* * *ИЛИ t² -6t -7 =0 t² -7t +t -7 =0 ⇔t(t -7) +(t -7) =0⇔(t -7)(t+ 1) =0 * * *
4) √(x²-4x+4) - 6=5√(2 -x)
√(2-x)² - 6 = 5√(2 -x) замена : t =√(2-x) ≥ 0
t² -5t -6 =0 ⇒ по Виету t₁ = 6 ; t₂= - 1 →посторонний
√(2 -x) =6 ⇔2 - x =6²⇒ x = 2 -36 = -34 .
Решите уравнение, используя функционально-графические методы
5) 2ˣ = 6-x
у₁ =2ˣ → (возрастающая показательная функция: 2 >1 ) ;
{ ...(- 2 ; 1/4) , (- 1 ; 1/2) , (0 ; 1) , (1; 2) , (2 ; 4) ; ...} ∈ графику
y₂ = - x +6 → ( ||y = kx+b || убывающая линейная функция: k = - 1 < 0 ).
{ (0 ;6) , (6 ; 0) . || (2 ; 4) } ∈ графику y₂
* * * графики постройте самостоятельно * * *
Пересечением графиков функций у₁ и y₂ получается ответ
x = 2 .
6) (1/3)ˣ= x + 4
у₁ = (1/3)ˣ → (убывающая показательная функция: 0<1/3<1)
{ ... (- 2 ; 9 ) , (-1; 3) , (0 ; 1) ; (1; 1/3) , (2 ; 1/9) ; ...} ∈ графику
у₂ = x + 4→ ( возрастающая линейная функция : k = 1 > 0)
{ ( - 4 ; 0) ; (0; 4) . || (-1 ; 3) }
x = -1 .
Объяснение:
0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bgathered%7D2%29%5C%3B%5C%3B%7B%5Clog_%7Bx-3%7D%7D%28x%2B1%29%5Chfill%5C%5C%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%2B1%3E0%5Chfill%5C%5Cx-3%3E0%5Chfill%5C%5Cx-3%5Cne1%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5CLeftrightarrow%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%3E-1%5Chfill%5C%5Cx%3E3%5Chfill%5C%5Cx%5Cne4%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5Chfill%5C%5C%5Cboxed%7Bx%5Cin%283%3B%2B%5Cinfty%29%7D%5Chfill%5C%5C%5Cend%7Bgathered%7D%5C%5D" title="\[\begin{gathered}2)\;\;{\log_{x-3}}(x+1)\hfill\\\left\{\begin{gathered}x+1>0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]">