ответ:Решение методом подстановки.
1) (-y+5;y), y∈ R
{ x = − y + 5
y = − x + 5
y = − ( − y + 5 ) + 5
0 = 0
2) решений нет (прямые параллельны).
{ 2 x + y = 8
10 x + 5 y = 10
{ y = − 2 x + 8
--
{ y = − 2 x+ 8
10 x +
5( − 2x + 8 ) = 10
30 = 0
3)y=-1/3;x=1 2/3
{ y − x = − 2
y + 2 x = 3
---
{ y = x − 2
-
( x − 2 ) + 2 x = 3
{ y =x − 2
3 x − 5 = 0
x = 5 /3
{ y = − 1 /3
4)y = 4 ; x = − 1.
{ y + x = 3
− y + 2 x + 6 = 0
{ y = − x + 3
−y + 2 x + 6 = 0
− ( − x + 3 ) + 2 x + 6 = 0
3 x + 3 = 0
x = − 1
{ y = 4
ЭТО ВСЁ МЕТОД ПОДСТАНОВКИ!
ответ:Решение методом подстановки.
1) (-y+5;y), y∈ R
{ x = − y + 5
y = − x + 5
{ x = − y + 5
y = − ( − y + 5 ) + 5
{ x = − y + 5
0 = 0
2) решений нет (прямые параллельны).
{ 2 x + y = 8
10 x + 5 y = 10
{ y = − 2 x + 8
10 x + 5 y = 10
--
{ y = − 2 x+ 8
10 x +
5( − 2x + 8 ) = 10
{ y = − 2 x + 8
30 = 0
3)y=-1/3;x=1 2/3
{ y − x = − 2
y + 2 x = 3
---
{ y = x − 2
y + 2 x = 3
-
{ y = x − 2
( x − 2 ) + 2 x = 3
{ y =x − 2
3 x − 5 = 0
{ y = x − 2
x = 5 /3
{ y = − 1 /3
x = 5 /3
4)y = 4 ; x = − 1.
{ y + x = 3
− y + 2 x + 6 = 0
{ y = − x + 3
−y + 2 x + 6 = 0
{ y = − x + 3
− ( − x + 3 ) + 2 x + 6 = 0
{ y = − x + 3
3 x + 3 = 0
{ y = − x + 3
x = − 1
{ y = 4
x = − 1
ЭТО ВСЁ МЕТОД ПОДСТАНОВКИ!
1)(2x-1)*2=2x-1
2x*2-1*2=2x-1
4x-1*2=2x-1
4x-2=2x-1
4x-2+2x=1
6x-2=1
6x=1+2
6x=3
x=6:3
x=2
2)(x-3)*2=4(x-3)
2x-3*2=4(x-3)
2x-6=4(x-3)
2x-6=4x-4*3
2x-6=4x-12
2x-6+4x=12
6x-6=12
6x=12+6
6x=18
x=18:6
x=3
3)4(x-3)*2=(2x+6)*2
(4x-4*3)*2=(2x+6)*2
(4x-12)*2=(2x+6)*2
4x*2-12*2=(2x+6)*2
8x-12*2=(2x+6)*2
8x-24=(2x+6)*2
8x-24=2x*2+6*2
8x-24=4x+6*2
8x-24=4x+12
8x-24-4x=12
4x-24=12
4x=24+12
4x=36
x=36:4
x=9
4)(3x+4)*2=3(x+4)
3x*2+4*2=3(x+4)
6x+4*2=3(x+4)
6x+8=3(x+4)
6x+8=3x+3*4
6x+8=3x+12
6x+8-3x=12
3x+8=12
3x=12-8
3x=4
x=4:3
x=1(ост.1)