Вероятность извлечь первым белый шар равна 3/8, остаётся 7 шаров из них 2 белых. Вероятность извлечь второй белый шар 2/7. Вероятность что первый и второй белые шары
Р₁=3/8*2/7=6/56=0,11
Аналогично находим что оба шара черные
Р₂=5/8*4/7=20/56=0,36
Вероятность что оба шара одного цвета (или оба белые или оба черные)
Р=Р₁+Р₂=0,11+0,36=0,47
Вероятность что первый белый, а второй черный
Р₃=3/8*5/7=15/56=0,27
Вероятность что первый черный, а второй белый
Р₄=5/8*3/7=15/56=0,27
Вероятность что шары разного цвета
Р=Р₃+Р₄=0,27+0,27=0,54
ответ: более вероятно событие в) - шары разных цветов
* * * ax²+bx +c=a(x -x₁)(x -x₂) ; 16 - x² > 0 ⇔ x² -16 < 0⇔ (x+4)(x-4)<0 * * *
ООФ (или D(y) ) определяется системой неравенств:
{2x² -5x -3 >0 , {2(x+1/2)(x -3) >0 , { x ∈(-∞; -1/2) ∪(3; ∞) ,
{ 16 -x² >0 ; ⇔ {(x+4)(x-4) < 0 ; ⇔ { x ∈(-4; 4) ;
⇒ x ∈(- 4 ; -1/2) ∪ (3; 4) .
"+" " -" "+"
(-1/2) (3)
"+" " -" "+"
(-4) (4)
Сумма целых чисел из области определения : (-3)+(-2) +(-1) = - 6.
ответ : - 6.
Всего шаров 8.
Вероятность извлечь первым белый шар равна 3/8, остаётся 7 шаров из них 2 белых. Вероятность извлечь второй белый шар 2/7. Вероятность что первый и второй белые шары
Р₁=3/8*2/7=6/56=0,11
Аналогично находим что оба шара черные
Р₂=5/8*4/7=20/56=0,36
Вероятность что оба шара одного цвета (или оба белые или оба черные)
Р=Р₁+Р₂=0,11+0,36=0,47
Вероятность что первый белый, а второй черный
Р₃=3/8*5/7=15/56=0,27
Вероятность что первый черный, а второй белый
Р₄=5/8*3/7=15/56=0,27
Вероятность что шары разного цвета
Р=Р₃+Р₄=0,27+0,27=0,54
ответ: более вероятно событие в) - шары разных цветов
Объяснение: