Обозначим углы треугольника следующим образом: а - наименьший, b - средний по величине, c - наибольший. Находим сумму наименьшего с наибольшим: а+с Так как сумма углов треугольника равна 180°, то b=180°-(a+c) Анализируем предложенные ответы: А) если (а+с)=61°, то b=180°-61°=119° - тупой угол, следовательно наибольший угол - противоречие условию "b - средний по величине угол" Б) если (а+с)=90°, то b=180°-90°=90° - прямой угол, следовательно наибольший угол - также противоречие условию "b - средний по величине угол" В) если (а+с)=91°, то b=180°-91°=89° - в качестве примера отлично подходят углы а=1°, с=90° - полное соответствие условию: а - наименьший, b - средний, с - наибольший угол. Дальнейшая проверка ответов не имеет смысла, так как необходимо было найти самый маленький результат. ответ: 91°
Если всё это нарисовать, то будет видно, что площадь этой фигуры - по сути интеграл фигуры под графиком первой функции до точек пересечения со второй и третьей. Сначала найдём на всякий случай эти точки: 1. 8-x^3=0 8 = x^3 x = 2 Первая точка - {2; 0} 2. у(-1) = 8 - (-1)^3 = 8 + 1 = 9 Вторая точка (-1; 9). Теперь берём определённый интеграл первой функции на интервале [-1; 2]. Неопределённый интеграл будет равен: 8x - 1/4 x^4 + C Подставляя границы, получаем: S = (8*2 - 1/4*(2^4)) - (8*(-1) - 1/4*((-1)^4)) = (16 - 4) - (-8 + 1/4) = 19 3/4 Вроде бы так
а - наименьший, b - средний по величине, c - наибольший.
Находим сумму наименьшего с наибольшим: а+с
Так как сумма углов треугольника равна 180°, то b=180°-(a+c)
Анализируем предложенные ответы:
А) если (а+с)=61°, то b=180°-61°=119° - тупой угол, следовательно наибольший угол - противоречие условию "b - средний по величине угол"
Б) если (а+с)=90°, то b=180°-90°=90° - прямой угол, следовательно наибольший угол - также противоречие условию "b - средний по величине угол"
В) если (а+с)=91°, то b=180°-91°=89° - в качестве примера отлично подходят углы а=1°, с=90° - полное соответствие условию: а - наименьший, b - средний, с - наибольший угол.
Дальнейшая проверка ответов не имеет смысла, так как необходимо было найти самый маленький результат.
ответ: 91°
Сначала найдём на всякий случай эти точки:
1. 8-x^3=0
8 = x^3
x = 2
Первая точка - {2; 0}
2. у(-1) = 8 - (-1)^3 = 8 + 1 = 9
Вторая точка (-1; 9).
Теперь берём определённый интеграл первой функции на интервале [-1; 2]. Неопределённый интеграл будет равен:
8x - 1/4 x^4 + C
Подставляя границы, получаем:
S = (8*2 - 1/4*(2^4)) - (8*(-1) - 1/4*((-1)^4)) = (16 - 4) - (-8 + 1/4) = 19 3/4
Вроде бы так