чисельник звичайного нескоротного дробу на 5 менший від знаменника. якщо до чисельника цього дробу додати 1 а до знаменника 8 то дріб збільшиться на 1/4 .знайдіть цей дріб
Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y - производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1
1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.
Решив совместно эти два уравнения , получаем : x=12, y=24.
Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1
По формуле t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.
60% пачек на 1 полке
Объяснение:
Пусть на 3 полке x пачек, тогда на 2 полке x+22 пачек.
На 1 полке в 1,5 раза больше, чем на 2 и 3 полках вместе, то есть:
1,5(x + x + 22) = 3/2*(2x + 22) = 3(x + 11) = 3x + 33.
На всех трёх полках всего 215 пачек.
3x + 33 + x + x + 22 = 215
5x + 55 = 215
x + 11 = 43
x = 43 - 11 = 32 пачки на 3 полке.
x + 22 = 32 + 22 = 54 пачки на 2 полке.
1,5(32 + 54) = 3/2*86 = 3*43 = 129 пачек на 1 полке.
129 + 54 + 32 = 215 пачек всего.
На 1 полке находится:
129/215 = 3/5 = 6/10 = 0,6 = 60% пачек.
Только причем здесь психопатия?
Пусть объём бассейна равен 1, тогда время его заполнения до ремонта первым насосом – x, а вторым – y часов. Значит, 1/x - производительность первого насоса до ремонта, а 1/y - производительность второго насоса до ремонта. Зная, что бассейн до ремонта насосов заполняется за 8 часов, то составим первое уравнение: 8(1/x+1/y)=1
1,2(1/x) - производительность первого насоса до ремонта, а 1,6(1/y) - производительность второго насоса после ремонта. Зная, что бассейн после ремонта насосов заполняется за 6 часов, то составим второе уравнение: 6(12/x+16/y)=1.
Решив совместно эти два уравнения , получаем : x=12, y=24.
Из найденных значений для x и y вычислим производительность первого насоса после ремонта: 1,2(1/x)=(1,2*1)/12=0,1
По формуле t=A/P найдём время наполнения бассейна при работе только первого насоса после ремонта: 1/0,1=10 ч.
ответ: 10 ч.
Поставь лучший ответ