В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
marimuravskap08uv0
marimuravskap08uv0
11.06.2020 20:41 •  Алгебра

Числа a и b иррациональные, причем a+b - число рациональное и a не равно -b. докажите, что число a-2b иррациональное. рациональным или иррациональным является число a^2-ab-2b^2?

Показать ответ
Ответ:
альона44в311234
альона44в311234
02.10.2020 17:29
Для решения надо вспомнить два полезных наблюдения.
I. Сумма иррационального и рационального чисел - иррациональное число.
II. Произведение рационального числа, не равного нулю, на иррациональное число - иррациональное число.
(Оба наблюдения доказываются от противного, в итоге придем к противоречию: в первом случае иррациональное слагаемое - разность двух рациональных чисел, во втором - иррациональный сомножитель представляется в виде частного рациональных чисел).

Решение.
1) a - 2b = (a + b) - 3b - иррационально как сумма рационального по условию числа a+b и иррационального по наблюдению II числа (-3)*b
2) a^2 - ab - 2b^2 = a^2 + ab - 2ab - 2b^2 = a(a + b) - 2b(a + b) = (a + b)(a - 2b) - иррационально как произведение рационального ненулевого по условию числа a+b и иррационального по доказанному числу a-2b.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота