1) Непонятно, 2*корень из 3 в входит в степень числа 7 или нет 2) При каких целых значениях а квадратное уравнение ax^2+24x+11=0 D=576-44a>0 44a<576 a<144/11 - при таких а корни есть вообще делаем уравнение приведенным x^2+24/ax+11/a=0 Чтобы сумма рациональных корней была целой, нужно чтобы -24/а - было целым, по теореме Виета возможные варианты: а=+-24;+-4;+6;+-8;+-12 вариант +-1 отпадает, т.к. тогда дискриминант не будет полным квадратом D=576-44a подбираем а, когда D - полный квадрат +-24 - нет, -4 - нет, +-6 - нет, +-8 -нет, +-12 -нет остается а=4 при а=4 это квадратное уравнение имеет рациональные корни, сумма которых целое число 3) возможно опечатка: либо 3^32 либо 2^30
диагонали = 10 см
Объяснение:
сумма двух разных сторон прямоугольника равна половине его периметра 14 см
Обозначим одну сторону х
вторую 14-х
Площадь прямоугольника равна произведению его смежных сторон
составим уравнение
х(14-х)=48
14х-х^2=48
x^2-14x+48=0
найдем х через дискриминант
x1=8
x2=6
Если первая сторона равна 8 то вторая 14-х=6см
Если первая сторона равна 6 то вторая равна 14-6=8см
Стороны прямоугольника 6 см и 8 см
Теперь найдем диагональ по теореме Пифагора
пусть диагональ х
x^2= 8^2+6^2
x^2= 64+36
x^2=100
x=10 см - диагонали прямоугольника
2) При каких целых значениях а квадратное уравнение
ax^2+24x+11=0
D=576-44a>0
44a<576
a<144/11 - при таких а корни есть вообще
делаем уравнение приведенным
x^2+24/ax+11/a=0
Чтобы сумма рациональных корней была целой, нужно чтобы -24/а - было целым, по теореме Виета
возможные варианты:
а=+-24;+-4;+6;+-8;+-12
вариант +-1 отпадает, т.к. тогда дискриминант не будет полным квадратом
D=576-44a
подбираем а, когда D - полный квадрат
+-24 - нет, -4 - нет, +-6 - нет, +-8 -нет, +-12 -нет
остается а=4
при а=4 это квадратное уравнение имеет рациональные корни, сумма которых целое число
3) возможно опечатка: либо 3^32 либо 2^30