В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ruslanalsibaev
ruslanalsibaev
19.02.2023 04:14 •  Алгебра

Численность армии достигала 120 тыс. Цари жестоко обращались с покорёнными народами А
Греко- Бактрийское царство
Богатства покоренных народов царь использовал для строительства укрепления и украшения своего города

В
Кушанское царство
Античные источники называли «страной тысячи городов». Армия состояла из сильной конницы и пехоты, в которую входили свободные люди

С
Парфянское царство
Глава государства носил титул «марзбану», правители районов – «дизпаты»

D
Нововавилонская империя
Главу данного государства называли «царем царей». Чеканил свои золотые монеты, которые развитию торговли в стране

E
Ассирийская держава

Показать ответ
Ответ:
Софья151516
Софья151516
17.12.2021 21:19

Нельзя.

Объяснение:

Так как вариантов слишком много, то придется зайти с другой стороны.

Для начала следует вычесть единицу, а потом делть на 3 или 4.

2019 не делится на четыре так как оно не четное. На три делится, так как сумма цифр делится на три - 2+0+1+9=12

Разделив на три получаем число 673 и сразу же вычитаем единицу. Полученное число делится и на три и на четыре, потому придется пробовать все варианты.

672/4=168

168-1=167 (не делится на четыре)

167/3=56

56-1=55 (не делится ни на три ни на четыре)

Попробуем другим путем.

672/3=224

224-1=223 (это простое число)

0,0(0 оценок)
Ответ:
Abdueva
Abdueva
07.09.2020 01:42

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота