Пусть рыбак поймал всего N рыб. Он их разложил по x рыб в пакет, получилось 17 пакетов - 16 полных и 4 рыбы в последнем. Это значит, что N делится на 16 и на x с остатком 4. Ясно, что x > 4. N = 16x + 4 А когда он разложил те же N рыб по (x-1) рыбы, то у него все пакеты были заполнены. Значит, N делится на (x-1) нацело, и получается неизвестное число пакетов. Представим, что мы уже разложили по x рыб в 16 пакетов, и 4 остались лишние. Вынем из каждого пакета по 1 рыбе. Получится 16 пакетов по (x-1) рыбе и 16 + 4 = 20 рыб остается. Значит, эти 20 рыб делятся на (x-1). 20 = 2*2*5 и имеет делители 1, 2, 4, 5, 10, 20. x - 1 = 4, x = 5, N = 5*16 + 4 = 84 = 4*21 x - 1 = 5, x = 6, N = 6*16 + 4 = 100 = 5*20 x - 1 = 10, x = 11, N = 11*16 + 4 = 180 = 10*18 x - 1 = 20, x = 21, N = 21*16 + 4 = 340 = 20*17
Извините, но напишу своё решение: нахождение минимума и максимума функции на отрезке связано с нахождением экстремумов на отрезке и значений функции на концах отрезка. Таким образом имеем функцию у=6-2х, и отрезок [-1;4] у'=-2, что естественно никогда ≠ 0, а меньше 0 ⇒функция равномерно убывает⇒имеет наименьшее значение на большей границе а наибольшее на меньшей границе рассматриваемого интервала(отрезка) ( и далее по тексту Звездины) у(-1)=6-2*(-1)=6+2=8 у(4)=6-2*4=6-8=-2 ответ: наибольшее 8, наименьшее -2
Он их разложил по x рыб в пакет, получилось 17 пакетов -
16 полных и 4 рыбы в последнем.
Это значит, что N делится на 16 и на x с остатком 4. Ясно, что x > 4.
N = 16x + 4
А когда он разложил те же N рыб по (x-1) рыбы, то у него все пакеты были заполнены.
Значит, N делится на (x-1) нацело, и получается неизвестное число пакетов.
Представим, что мы уже разложили по x рыб в 16 пакетов,
и 4 остались лишние.
Вынем из каждого пакета по 1 рыбе. Получится 16 пакетов по (x-1) рыбе и
16 + 4 = 20 рыб остается.
Значит, эти 20 рыб делятся на (x-1).
20 = 2*2*5 и имеет делители 1, 2, 4, 5, 10, 20.
x - 1 = 4, x = 5, N = 5*16 + 4 = 84 = 4*21
x - 1 = 5, x = 6, N = 6*16 + 4 = 100 = 5*20
x - 1 = 10, x = 11, N = 11*16 + 4 = 180 = 10*18
x - 1 = 20, x = 21, N = 21*16 + 4 = 340 = 20*17
нахождение минимума и максимума функции на отрезке связано с нахождением экстремумов на отрезке и значений функции на концах отрезка.
Таким образом имеем функцию у=6-2х, и отрезок [-1;4]
у'=-2, что естественно никогда ≠ 0, а меньше 0 ⇒функция равномерно убывает⇒имеет наименьшее значение на большей границе а наибольшее на меньшей границе рассматриваемого интервала(отрезка)
( и далее по тексту Звездины)
у(-1)=6-2*(-1)=6+2=8
у(4)=6-2*4=6-8=-2
ответ: наибольшее 8, наименьшее -2