Построим график (см. приложенный файл) и отметим на нем выколотые точки: x≠-2/7 и x≠2/7
Очевидно, что прямая y=kx не будет иметь с графиком общих точек только в том случае, если будет проходить через выколотые точки. Определим угловой коэффициент k для случая x=-2/7 (соответствующее значение функции y = -3.5)
-3.5 = k*(-2/7), k = 49/4.
Определим угловой коэффициент k для случая x=2/7 (соответствующее значение функции y = -3.5)
Разложим числа на простые множители и подчеркнем общие множители чисел:
48 = 2 · 2 · 2 · 2 · 3
120 = 2 · 2 · 2 · 3 · 5
75 = 3 · 5 · 5
Общие множители чисел: 3
НОД (48; 120; 75) = 3
Наименьшее общее кратное:
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
150 = 2 · 3 · 5 · 5
60 = 2 · 2 · 3 · 5
18 = 2 · 3 · 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
Пусть подмодульное выражение больше нуля:
x>0. Тогда функция приобретает вид
, при этом -1+3.5 x≠0, x≠2/7
Пусть теперь подмодульное выражение меньше нуля:
x<0. Тогда функция приобретает вид
, при этом -1-3.5 x≠0, x≠-2/7.
Построим график (см. приложенный файл) и отметим на нем выколотые точки: x≠-2/7 и x≠2/7
Очевидно, что прямая y=kx не будет иметь с графиком общих точек только в том случае, если будет проходить через выколотые точки. Определим угловой коэффициент k для случая x=-2/7 (соответствующее значение функции y = -3.5)
-3.5 = k*(-2/7), k = 49/4.
Определим угловой коэффициент k для случая x=2/7 (соответствующее значение функции y = -3.5)
-3.5 = k*(2/7), k = -49/4
ИЗВИНИТЕ НЕ МОГУ ПРИСЛАТЬ КАРТИНКУ.
Разложим числа на простые множители и подчеркнем общие множители чисел:
48 = 2 · 2 · 2 · 2 · 3
120 = 2 · 2 · 2 · 3 · 5
75 = 3 · 5 · 5
Общие множители чисел: 3
НОД (48; 120; 75) = 3
Наименьшее общее кратное:
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
150 = 2 · 3 · 5 · 5
60 = 2 · 2 · 3 · 5
18 = 2 · 3 · 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (150; 60; 18) = 2 · 3 · 5 · 5 · 2 · 3 = 900