тактак как в треугольнике если провести диагональ получается четыре треугольника то треугольника в треугольнике общая сумма 180 градусов сначала 180 умножать на число квадратов получивший 4 получается 180 на 4 равно 720по формуле формула такая скобка открывается икс минус 2 скобка закрывается x 180 - это количество углов то есть у нас в данном случае 8 не являются соседями являются значит 8 - 2получается 6 если сделать по диагонали это получается треугольники значит 180 так задание получается 1080 градусовукажи номеров и полках треугольника это получается 1 и 4 если разделить провести прямую то она остается в своей фигурами значит это выпуклыйсамый последний 5 найти в 12 см каждая сторона 12 значит 12 + 4 раза + 13 + 12 + 12 + 12 ещё плюс 12 получилось 4 раза 12 24 36 48 получается 48 см ну всё
2 2 180 х 4 равняется 720
Объяснение:
тактак как в треугольнике если провести диагональ получается четыре треугольника то треугольника в треугольнике общая сумма 180 градусов сначала 180 умножать на число квадратов получивший 4 получается 180 на 4 равно 720по формуле формула такая скобка открывается икс минус 2 скобка закрывается x 180 - это количество углов то есть у нас в данном случае 8 не являются соседями являются значит 8 - 2получается 6 если сделать по диагонали это получается треугольники значит 180 так задание получается 1080 градусовукажи номеров и полках треугольника это получается 1 и 4 если разделить провести прямую то она остается в своей фигурами значит это выпуклыйсамый последний 5 найти в 12 см каждая сторона 12 значит 12 + 4 раза + 13 + 12 + 12 + 12 ещё плюс 12 получилось 4 раза 12 24 36 48 получается 48 см ну всё
1) Проверяем правильность утверждения при малых n.
n=1: 1=1² - верно
n=2: 1+3=2² - верно
n=3: 1+3+5=3² - верно
2) Предположим, что утверждение верно для n=k.
Тогда справедливо равенство 1+3+5++(2k-1)=k².
3) Докажем, что утверждение верно и для n=k+1.
Слева и справа добавим по 2(k+1)-1:
Получим 1+3+5++(2k-1)+(2(k+1)-1)=k²+2(k+1)-1
Преобразуем правую часть.
k²+2(k+1)-1=k²+2k+1=(k+1)².
Таким образом, из того, что 1+3+5++(2k-1)=k², следует то, что
1+3+5++(2k-1)+(2(k+1)-1)=(k+1)² - верно для n=k+1.
Объяснение: