1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
a = 563/51
Объяснение:
|9x + 7a - 3| = |4x + 3a + 4|
Здесь не нужна никакая разность квадратов.
Возможно всего два варианта:
1) 9x + 7a - 3 = -4x - 3a - 4
13x + 10a + 1 = 0
x1 = (-10a - 1)/13
2) 9x + 7a - 3 = 4x + 3a + 4
5x + 4a - 7 = 0
x2 = (-4a + 7)/5
Нам надо, чтобы эти корни были разными. Найдем, при каком а они одинаковы.
(-10a - 1)/13 = (-4a + 7)/5
5(-10a - 1) = 13(-4a + 7)
-50a - 5 = -52a + 91
-50a + 52a = 91 + 5
2a = 96
a = 48
Значит, а не должно быть равно 48.
И нам надо, чтобы среднее арифметическое этих корней было -8.
(x1 + x2)/2 = -8
x1 + x2 = -16
(-10a - 1)/13 + (-4a + 7)/5 = -16
5(-10a - 1) + 13(-4a + 7) = -16*13*5
-50a - 5 - 52a + 91 = -1040
-102a = -1040 + 5 - 91 = -1126
a = -1126/(-102) = 1126/102 = 563/51
Оно не равно 48, значит, это решение.