Choose the correct words. 1 I don't / doesn't ski in the winter. 2 She don't / doesn't give presents. 3 Mr Diddly don't / doesn't have a party in Rio. 4 We don't / doesn't travel in the summer. 5 My dad don't / doesn't cook. помагите
лучше конечно читать параграф но я нашёл обьяснения
Объяснение:
Нули функции
Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.
Нули – это точки пересечения графика функции с осью Ох.
Четность функции
Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)
Четная функция симметрична относительно оси Оу
Нечетность функции
Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).
Нечетная функция симметрична относительно начала координат .
Функция которая не является ни чётной ,ни нечётной называется функцией общего вида.
Возрастание функции
Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е. x2>x1 → f(x2)>f(x1)
Убывание функции
Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е. x2>x1 → f(x2)<f(x1)
Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:
(-∞ x1), (x1, x2), (x3; +∞)
Находят промежутки монотонности с сервиса Интервалы возрастания и убывания функции
Локальный максимум
Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) > f(x)
Локальный минимум
Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) < f(x).
Точки локального максимума и точки локального минимума называются точками локального экстремума.
x1, x2 - точки локального экстремума.
Периодичность функции
Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).
Промежутки знакопостоянства
Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.
f(x)>0 при x∈(x1, x2)∪(x2, +∞), f(x)<0 при x∈(-∞,x1)∪(x1, x2)
Непрерывность функции
Функция f(x) называется непрерывной в точке x0, если предел функции при x → x0 равен значению функции в этой точке, т.е. .
Точки разрыва
Точки, в которых нарушено условие непрерывности называются точками разрыва функции.
В решении.
Объяснение:
1) a(x+y)+4x+4y розкласти на множники :
a(x+y)+4x+4y =
=a(x+y)+(4x+4y) =
=а(х + у) + 4(х + у) =
=(х + у)(а + 4).
2)Подати у вигляді добутку многочленів:1-ax-x+a:
1 -ax-x+a = (1 + а) - (х + ах) =
= (1 + а) - х(1 + а) =
= (1 + а)(1 - х).
3) Обчисліть значення виразу найзручнішим
12*5+18*5+13*15+17*15 =
= (12*5+18*5)+(13*15+17*15) =
= 5(12 + 18) + 15(13 + 17) =
= 5 * 30 + 15 * 30 =
= 30(5 + 15) = 30 * 20 = 600.
4) Розв'язатти рівняння:
2x(x+1)+4(x+1)=0
(х + 1)(2х + 4) = 0
х + 1 = 0
х₁ = -1;
2х + 4 = 0
2х = -4
х₂ = -2.
5) подати у вигляді добутку многочленів:x+4x-x-4:
x+4x-x-4 = 4х - 4 = 4(х - 1).
лучше конечно читать параграф но я нашёл обьяснения
Объяснение:
Нули функции
Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.
Нули – это точки пересечения графика функции с осью Ох.
Четность функции
Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)
Четная функция симметрична относительно оси Оу
Нечетность функции
Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).
Нечетная функция симметрична относительно начала координат .
Функция которая не является ни чётной ,ни нечётной называется функцией общего вида.
Возрастание функции
Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е. x2>x1 → f(x2)>f(x1)
Убывание функции
Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е. x2>x1 → f(x2)<f(x1)
Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:
(-∞ x1), (x1, x2), (x3; +∞)
Находят промежутки монотонности с сервиса Интервалы возрастания и убывания функции
Локальный максимум
Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) > f(x)
Локальный минимум
Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) < f(x).
Точки локального максимума и точки локального минимума называются точками локального экстремума.
x1, x2 - точки локального экстремума.
Периодичность функции
Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).
Промежутки знакопостоянства
Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.
f(x)>0 при x∈(x1, x2)∪(x2, +∞), f(x)<0 при x∈(-∞,x1)∪(x1, x2)
Непрерывность функции
Функция f(x) называется непрерывной в точке x0, если предел функции при x → x0 равен значению функции в этой точке, т.е. .
Точки разрыва
Точки, в которых нарушено условие непрерывности называются точками разрыва функции.
x0- точка разрыва.