Човен плив за течіею річки 3,8 год і проти течії 3,2 год. Шлях, який човен пройшов за течією, на 4,8км довший, ніж шлях, який пройшов човен проти течії. Знайдіть власну швидкість човна, якщо швидкість течи становить 2 км/год.
А)364-100% x-18% x=364×18÷100=65,52 Обазначим первую часть бруска через x, тогда вторая часть будет выглядеть так: x+65,52 Уравнение будет иметь вид: x+x+65,52=364 2x=364-65,52 2x=298,48 x=149,24-Длина первой части 149,24+65,52=214,76-Длина второй части б) Пусть сторона квадрата будет равна 10см. Тогда Периметр будет равен 40см, а Площадь 100см^2. Если Периметр увеличить на 10%: 40-100% x-110% x=44см-Периметр после увеличение на 10% Тогда сторона будет равна 11см. И соответственно Площадь будет равна 121см^2, то есть Площадь увеличится на 21%
Формулы для квадратов(a±b)2=a2±2ab+b2 a2−b2=(a+b)(a−b)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc Формулы для кубов(a±b)3=a3±3a2b+3ab2±b3a3±b3=(a±b)(a2∓ab+b2)(a+b+c)3=a3+b3+c3+3a2b+3a2c+3ab2+3ac2+3b2c+3bc2+6abc Формулы для четвёртой степени(a±b)4=a4±4a3b+6a2b2±4ab3+b4 a4−b4=(a−b)(a+b)(a2+b2) (выводится из a2−b2) Формулы для n-ой степени an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1) a2n−b2n=(a+b)(a2n−1−a2n−2b+a2n−3b2−...−a2b2n−3+ab2n−2−b2n−1), где n∈N a2n−b2n=(an+bn)(an−bn) a2n+1+b2n+1=(a+b)(a2n−a2n−1b+a2n−2b2−...+a2b2n−2−ab2n−1+b2n), где n∈N
x-18%
x=364×18÷100=65,52
Обазначим первую часть бруска через x, тогда вторая часть будет выглядеть так:
x+65,52
Уравнение будет иметь вид:
x+x+65,52=364
2x=364-65,52
2x=298,48
x=149,24-Длина первой части
149,24+65,52=214,76-Длина второй части
б) Пусть сторона квадрата будет равна 10см. Тогда Периметр будет равен 40см, а Площадь 100см^2. Если Периметр увеличить на 10%:
40-100%
x-110%
x=44см-Периметр после увеличение на 10%
Тогда сторона будет равна 11см. И соответственно Площадь будет равна 121см^2, то есть Площадь увеличится на 21%
Формулы для кубов(a±b)3=a3±3a2b+3ab2±b3a3±b3=(a±b)(a2∓ab+b2)(a+b+c)3=a3+b3+c3+3a2b+3a2c+3ab2+3ac2+3b2c+3bc2+6abc
Формулы для четвёртой степени(a±b)4=a4±4a3b+6a2b2±4ab3+b4 a4−b4=(a−b)(a+b)(a2+b2) (выводится из a2−b2)
Формулы для n-ой степени an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1) a2n−b2n=(a+b)(a2n−1−a2n−2b+a2n−3b2−...−a2b2n−3+ab2n−2−b2n−1), где n∈N a2n−b2n=(an+bn)(an−bn) a2n+1+b2n+1=(a+b)(a2n−a2n−1b+a2n−2b2−...+a2b2n−2−ab2n−1+b2n), где n∈N