Човен пливе 2,5 гол за течією і 3,4 год проти течії . Проти течії човен проплив на 2,6 км більше , ніж за течією . Знайдіть власну швидкість човна , якщо швидкість течії 2км / год
1). В числителе стоит формула квадратов: (6а-1)^2; В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.); (6а-1) сократится, будет 6а-1/а+2; 6а - 1/а + 2. 2). -х^2 - 2х + 8 》0; D = 4 - 4*(-1)*8 = 4 + 32 = 36; x1 = 2; x2 = -4. Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства. ответ: [-4;2] или -4《 х 《 2.
Надо помнить формулу, что 1+tg^2x =1/cos^2x, ну тогда и делаем замену в левой части уравнения и получаем: 2*cos^2x=1+sinx помним, что Cos^2 x=1-sin^2x, опять замену делаем 2*(1-sin^2x)=1+sinx открываем скобочки, все переносим влево: 2-2sin^2x=1+sinx 2-2sin^2x-1-sinx=0 -2sin^2x-sinx+1=0 делаем замену переменной: sinx=t -2t^2-t+1=0 имеем квадратное уравнение, решаем через дискриминант: D=1-4*(-2)*1=9=3^2 t(1)=(1-3)/-4=-2/-4=0.5 t(2)=(1+3)/-4=-1
совокупность уравнений решаем: первое из которых выглядит как sin x=0.5 , x=П/6+2Пn, х=5П/6+2Пn второе из которых выглядит как sin x=-1 , x=-П/6+2Пn
ну с поиском корней на отрезке, думаю, справишься, там либо через синусоиду искать, либо через окружность
В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.);
(6а-1) сократится, будет 6а-1/а+2;
6а - 1/а + 2.
2). -х^2 - 2х + 8 》0;
D = 4 - 4*(-1)*8 = 4 + 32 = 36;
x1 = 2; x2 = -4.
Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства.
ответ: [-4;2] или -4《 х 《 2.
2*cos^2x=1+sinx
помним, что Cos^2 x=1-sin^2x, опять замену делаем
2*(1-sin^2x)=1+sinx
открываем скобочки, все переносим влево:
2-2sin^2x=1+sinx
2-2sin^2x-1-sinx=0
-2sin^2x-sinx+1=0
делаем замену переменной:
sinx=t
-2t^2-t+1=0
имеем квадратное уравнение, решаем через дискриминант:
D=1-4*(-2)*1=9=3^2
t(1)=(1-3)/-4=-2/-4=0.5
t(2)=(1+3)/-4=-1
совокупность уравнений решаем:
первое из которых выглядит как sin x=0.5 , x=П/6+2Пn, х=5П/6+2Пn
второе из которых выглядит как sin x=-1 , x=-П/6+2Пn
ну с поиском корней на отрезке, думаю, справишься, там либо через синусоиду искать, либо через окружность