Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Всего револьвера у ковбоя Джона 10 из низ только 2 пристреляны. Вероятность выбора пристрелянного револьвера, равна 2/10=0,2.
Вероятность выбора не пристрелянного револьвера — 8/10 = 0,8.
A — ковбой Джон попадет в муху
H₁ — стреляет из пристреленного револьвера
H₂ — стреляет из не пристреленного револьвера
P(H₁) = 0.2;
P(H₂) = 0.8;
Условные вероятности заданы в условии задачи:
P(A|H₁) = 0.9
P(A|H₂) = 0.3
Найдем вероятность события А по формуле полной вероятности:
P(A) = P(H₁)*P(A|H₁) + P(H₂)*P(A|H₂) = 0.2*0.9 + 0.8*0.3 = 0.42
Вероятность того, что Джон промахнется, равна 1-P(A)=0.58
ответ: 0,58.