Чтобы найти максимум функции, сначала найдём производную и приравняем её к нулю (критические точки), затем определит знаки производной. 1) Производная у = 2(х - 7)(х + 8) + (х - 7)^2 = (x - 7)(2x + 16 + x - 7) = (x - 7)(3x + 9)= 3(x - 7)(x + 3) 2) Найдём критические точки 3(х - 7)(х + 3)= 0 (распадающееся уравнение) х - 7 = 0 х + 3 = 0 х = 7 х = - 3 3) Нарисуйте числовую прямую и отметьте критические точки - 3 и 7. Они разбиваю прямую на три промежутка. Так как перед переменными стоят положительные знаки, то используя метод интервалов с правого интервала идёт чередование знаков "+ " "-" "+" 4) В точке х = - 3 знаки производной меняются с "+" на "-", а это признак точки максимум ответ: х = - 3
Производительность Время Количество деталей (шт./час) (час) (шт.) Первый х 5 5х Второй 26-х 3 3(26-х) Всего - - 108 Составляем уравнение: 5х+3(26-х)=108 5х+78-3х=108 2х=108-78 2х=30 х=30:2 х=15(шт./час)-изготавливал первый рабочий 26-15=11(шт./час)-изготавливал второй рабочий х=30:2 х=15(шт./час)-изготавливал первый рабочий 26-15=11(шт./час)-изготавливал второй рабочий
1) Производная у = 2(х - 7)(х + 8) + (х - 7)^2 = (x - 7)(2x + 16 + x - 7) = (x - 7)(3x + 9)= 3(x - 7)(x + 3)
2) Найдём критические точки 3(х - 7)(х + 3)= 0 (распадающееся уравнение)
х - 7 = 0 х + 3 = 0
х = 7 х = - 3
3) Нарисуйте числовую прямую и отметьте критические точки - 3 и 7. Они разбиваю прямую на три промежутка. Так как перед переменными стоят положительные знаки, то используя метод интервалов с правого интервала идёт чередование знаков "+ " "-" "+"
4) В точке х = - 3 знаки производной меняются с "+" на "-", а это признак точки максимум
ответ: х = - 3
(шт./час) (час) (шт.)
Первый х 5 5х
Второй 26-х 3 3(26-х)
Всего - - 108
Составляем уравнение:
5х+3(26-х)=108
5х+78-3х=108
2х=108-78
2х=30
х=30:2
х=15(шт./час)-изготавливал первый рабочий
26-15=11(шт./час)-изготавливал второй рабочий
х=30:2
х=15(шт./час)-изготавливал первый рабочий
26-15=11(шт./час)-изготавливал второй рабочий