Смотри, думаю, вам объясняли, что модуль-это только расстояние, а направление может быть любым. То есть если сказано: |x|=5, то x=+5(если мы идём вправо по координатной прямой) или х=-5(влево). Можно связать с окружностью с центром в точке 0, ведь она пройдет через ДВЕ(и это очень важно запомнить) точки прямой на одинаковом расстоянии от 0.
С уравнениями просто: если модуль чему-то равен, то нужно просто рассматривать оба варианта движения отдельно. Например, |х+4|=1, тогда х+4=1 и х=-3, или х+4=-1 и х=-5.
(2x^2-3x+1)(2x^2+5x+1)=9x^2посмотрим что (могу и ошибиться,ибо все делаю не так как надо)1.)приравниваем к нулю: (2x^2-3x+1)(2x^2+5x+1)-9x^2=0 2.) раскрываем скобки: 4x^4 +10x^3+2x^2 -6x^3-15x^2-3x+2x^2+5x+1-9x^2=0 4x^4+4x^3-20x^2+2x=-1 3)выносим за скобки 2x: 2x(2x^3+2x^2-10x+1)=-1 2x=-1, x1=-0,5дальше,продолжаем2x^3+2x^2-10x+1=-1,отсюда 2x^3+2x^2-10x=-2,отсюда 2x за скобки снова: 2x(x^2+x-5)=-2, 2x=-2, x2=-1 x^2+x-5=-1,отсюда x^2+x=4, отсюда x за скобки: x(x+1)=4, x3=4, x4=3x1+x2+x3+x4=-0,5+(-1)+4+3=-1,5+7=5,5
С уравнениями просто: если модуль чему-то равен, то нужно просто рассматривать оба варианта движения отдельно. Например, |х+4|=1, тогда х+4=1 и х=-3, или х+4=-1 и х=-5.