Дробь — это выражение вида рq , где р и q — многочлены; р — числитель, а q — знаменатель дроби. например: a−bb 2−1 где p = a−b , а q = b 2−1 ; x 2+3y 3+x где p = x 2+3 , а q = y 3+x ; y 2−1y−1 где p = y 2−1 , а q = y−1 . многочлен — это частный случай дроби. например, многочлен y 3+2y+7 равен дроби y 3+2y+71 , а дробь 3x 2+5x−15 можно записать в виде многочлена 35x 2+x− 15 . из курса мы знаем, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число. например: 35 = 3•25•2 = 610 . дроби можно преобразовывать аналогичным способом: числитель и знаменатель дроби можно умножить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби; числитель и знаменатель дроби можно разделить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби, его называют сокращением дроби. данные правила называют основным свойством дроби. рассмотрим примеры. дробь x 2−xx 2 можно заменить на x−1x (числитель и знаменатель разделили на x ). дробь x 2+3xy+1 можно заменить на x 3+3x 2xy+x (числитель и знаменатель умножили на x ). дробь y 2−6y+9y 2−9 можно заменить на (y−3) 2(y−3)(y+3) = y−3y+3 (числитель и знаменатель разделили на y−3 ). равенство y 2−6y+9y 2−9 = y−3y+3 называется тождеством, а преобразование дроби y 2−6y+9y 2−9 в дробь y−3y+3— тождественным преобразованием заданной дроби, в данном случае, сокращением дроби. следует помнить, что тождеством наше равенство является при условии, что y ≠ 3 и y ≠ – 3 , так как знаменатель изначальной дроби при данных значениях переменной обращается в нуль и выражение y 2−6y+9y 2−9 теряет смысл.
так как з6 разделили поровну, то число коробок должно быть делителем числа 36. выпишем все делители числа 36. это 1, 2, 3, 4, 6, 9, 12, 18, 36. 1 отпадает так как коробок было несколько. 2 отпадает так как в условии говорится что если бы коробок было на 2 меньше, то.. на 2 меньше получается 0 коробок, а этого не может быть. по этой же причине отпада 3 коробки так как на 2 меньше останется только 1 коробка. 9, 12, 18, 36 так как на 2 меньше это будет число коробок 7, 10, 16 и 34. 36 не делится на эти числа и следовательно положить равное число карандашей будет нельзя. осталось число коробок 4, 6. если коробок было 4, то в них было по 9 карандашей. на 2 коробки меньше будет 2 коробки и в них будет по 18 карандашей. не сходится с тем что тогда в коробках будет на 3 карандаша больше. 4 коробки отпадает. ответ было 6 коробок по 6 карандашей.
проверка: если число коробок будет на 2 меньше, т. е. 4 коробки то в них будет по 9 карандашей как раз на 3 больше чем было раньше.
решение 1)
так как з6 разделили поровну, то число коробок должно быть делителем числа 36. выпишем все делители числа 36. это 1, 2, 3, 4, 6, 9, 12, 18, 36. 1 отпадает так как коробок было несколько. 2 отпадает так как в условии говорится что если бы коробок было на 2 меньше, то.. на 2 меньше получается 0 коробок, а этого не может быть. по этой же причине отпада 3 коробки так как на 2 меньше останется только 1 коробка. 9, 12, 18, 36 так как на 2 меньше это будет число коробок 7, 10, 16 и 34. 36 не делится на эти числа и следовательно положить равное число карандашей будет нельзя. осталось число коробок 4, 6. если коробок было 4, то в них было по 9 карандашей. на 2 коробки меньше будет 2 коробки и в них будет по 18 карандашей. не сходится с тем что тогда в коробках будет на 3 карандаша больше. 4 коробки отпадает. ответ было 6 коробок по 6 карандашей.
проверка: если число коробок будет на 2 меньше, т. е. 4 коробки то в них будет по 9 карандашей как раз на 3 больше чем было раньше.