Цияға қойып, ең үлкенін және ең кіші мәндерін аласыздар! №51.1 Берілген кесіндідегі функцияның ең үлкен және ең кіші мәндерін табыңдар
1. f(x) = 7x — 14, [0; 4]
2. f(x) = — 0,2х +0,4 [1;3]
№517 Берілген кесіндідегі функцияның ең үлкен және ең кіші мәндерін табыңдар.
1. f(x) = х2 – 8х + 17, [-1; 2]
2. f(x) = х2 – 4х + 3, [1; 2]
No518
1. f(x) = 2х2 – 5х + 6, [-2; 4]
2. f(x) = -3х2 – х + 3, [1; 2]
Алгебра 11 клас тауып беріңіздерш
решите систему уравнений методом подстановки общая скобка один пример сверху другой снизу 3x-y=-5. -5x+2y=1, т. е из одного уравнения выразить одну переменную и подставить во второе. Из двух уравнений проще выразить из первого у, т. к. коэффициент равен 1, получим
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!
Объяснение:
Объяснение:
1)
logₓ81+log₃x-5=0 ОДЗ: x>0 x≠1 x∈(0;1)U(1;+∞).
logₓ3⁴+log₃x-5=0
4*logₓ3+log₃x-5=0
(4/log₃x)+log₃x-5=0
4+log₃²x-5*log₃x=0
Пусть log₃x=t ⇒
t²-5t+4=0 D=9 √9=3
t₁=log₃x=4 x=3⁴ x₁=81
t₂=log₃x=1 x=3¹ x₂=3.
ответ: x₁=81 x₂=3.
2)
logₓ4-log₂x+1=0 ОДЗ: x>0 x≠1 ⇒ x∈(0;1)U(1;+∞).
logₓ2²-log₂x+1
2*logₓ2-log₂x+1=0
(2/log₂x)-log₂x+1=0
2-log₂²x+log₂x=0 |×(-1)
log₂²x-log₂x-2=0
Пусть log₂x=t ⇒
t²-t-2=0 D=9 √D=3
t₁=log₂x=2 x=2² x₁=4
t₂=log₂x=-1 x=2⁻¹ x₂=1/2.
ответ: x₁=4 x₂=1/2.