Пусть во второй емкости "х" л воды. В первой емкости на 3 л воды больше, значит в первой емкости "х+3" л воды. Если из первой емкости перелить во вторую 15 л воды, то в первой емкости станет "х+3-15" л воды, а во второй станет "х+15" л воды. Зная, что после этого, во второй емкости будет воды в 2 раза больше, составляем уравнение. 2 * (х + 3 - 15) = х + 15 ; 2 * (х - 6 ) = х + 15 ; 2х - 12 = х + 15 ; 2х - х = 15 + 12 ; х = 27 (л) во второй емкости. 1) х + 3 = 27 + 3 = 30 (л) в первой емкости.
Исследовать функцию и построить график: Область определения: множество всех действительных чисел D(y)=R
Точки пересечения с осью Ох и Оу:
1.1 Точки пересечения с осью Ох
По формуле Кардано:
- точки пересечения с осью Ох
1.2 Точки пересечения с осью Оу (х=0):
- Точки пересечения с осью Оу.
Возрастания и убывания функции(критические точки): Первая производная: Приравняем производную функцию к нулю, чтобы найти критические точки......................
По т. Виета
___+___(1)_____-_____(3)___+___> возр убыв возр
Итак, функция возрастает на промежутке x ∈ (-∞;1)U(3;+∞), а убывает на промежутке - (1;3). В точке х = 1, функция имеет локальный максимум, а в точке х = 3 - локальный минимум.
Возможные точки перегиба: Вторая производная: Вторую производную приравняем к нулю - Точка перегиба
Вертикальные асимптоты: нет. Горизонтальные асимптоты: нет. Наклонные асимптоты: нет.
Соостветвенно анализу графика построим график.(Смотреть во вложении)
Объяснение:
Пусть во второй емкости "х" л воды. В первой емкости на 3 л воды больше, значит в первой емкости "х+3" л воды. Если из первой емкости перелить во вторую 15 л воды, то в первой емкости станет "х+3-15" л воды, а во второй станет "х+15" л воды. Зная, что после этого, во второй емкости будет воды в 2 раза больше, составляем уравнение. 2 * (х + 3 - 15) = х + 15 ; 2 * (х - 6 ) = х + 15 ; 2х - 12 = х + 15 ; 2х - х = 15 + 12 ; х = 27 (л) во второй емкости. 1) х + 3 = 27 + 3 = 30 (л) в первой емкости.
Область определения: множество всех действительных чисел D(y)=R
Точки пересечения с осью Ох и Оу:
1.1 Точки пересечения с осью Ох
По формуле Кардано:
- точки пересечения с осью Ох
1.2 Точки пересечения с осью Оу (х=0):
- Точки пересечения с осью Оу.
Возрастания и убывания функции(критические точки):
Первая производная:
Приравняем производную функцию к нулю, чтобы найти критические точки......................
По т. Виета
___+___(1)_____-_____(3)___+___>
возр убыв возр
Итак, функция возрастает на промежутке x ∈ (-∞;1)U(3;+∞), а убывает на промежутке - (1;3). В точке х = 1, функция имеет локальный максимум, а в точке х = 3 - локальный минимум.
Возможные точки перегиба:
Вторая производная:
Вторую производную приравняем к нулю
- Точка перегиба
Вертикальные асимптоты: нет.
Горизонтальные асимптоты: нет.
Наклонные асимптоты: нет.
Соостветвенно анализу графика построим график.(Смотреть во вложении)