На паре-тройке примеров поясню идею. Нам можно решать уравнения y(x)=0, находить их корни и сравнивать их с абциссами (x координатами ) заданных точек. Ну решать все 6 уравнений мы не будем (Это стандартная процедура). Можно поступить иначе, подставлять по очереди в рассматриваемое уравнение х-координаты точек и проверять, являются ли они корнями. (т. е. получается ли в случае подстановки верное равенство). Причем, если окажется, что мы найдем 2 общих точки, дальше можно не проверять. Больше 2-х различных общих точек не будет, ибо уравнения квадратные. Итак по 1-му предложенному проанализируем вариант а)
Получаем 2 корня:
Сравниваем корни с х-координатами заданных точек. Видим, что две точки "попадают" N и K. Таким образом, для варианта а) запишем ответ: а) N(1; 0), K(2; 0)
Вариант б) Аналогично. (Кто помнит, может теорему Виета применить для поиска корней, мы же применим стандартный вариант)
Ну и вариант в) разберем методом "тыка" (перебора вариантов)
Подставляем х-координаты
Таким образом одна из предложенных точек будет общей точкой функции и координатной оси OX в) M(-1; 0)
Тут точек немного и перебор кажется простым. Хотя и уравнения тут несложные и легко решаются аналитически. В таких случаях лучше применять 1й В случае отсутствия вещественных корней ответ очевиден уже на стадии получения дискриминанта D). Однако в случае достаточно "навороченных" уравнений перебор может оказаться эффективнее. (А то и единственно доступным быстрым
Пересечение графика графика функции с осью Ox означает, что в этой точке значение функции равно нулю. Значит, чтобы решить задачу, нужно просто подставить координаты каждой точки в каждую формулу, задающую каждую функцию. Если в результате получится ноль, то данная точка является общей для графика данной функции и оси Ox, если получится число отличное от нуля, то не является.
а) y=x²-3x+2 M(-1;0) x²-3x+2 = (-1)² - 3*(-1)+2 = 1+3+2 = 6 ≠ 0 точка M не является общей N(1;0) x²-3x+2 = 1² - 3*(-1)+2 = 1-3+2 = 0 точка N общая K(2;0) x²-3x+2 = 2² - 3*2+2 = 4 - 6+2 = 0 точка K общая P(5;0) x²-3x+2 = 5² - 3*5+2 = 25-15+2 = 12 ≠ 0 точка P не является общей б) y=x²-4x-5 M(-1;0) x²-4x-5 = (-1)² - 4*(-1) - 5 = 1+ 4 - 5 = 0 точка M общая N(1;0) x²-4x-5 = 1² - 4*1 - 5 = 1- 4 - 5 = -8 ≠ 0 точка N не является общей K(2;0) x²-4x-5 = 2² - 4*2 - 5 = 4 - 8 - 5 = -9 ≠ 0 точка K не является общей P(5;0) x²-4x-5 = 5² - 4*5 - 5 = 25 - 20 - 5 =0 точка P общая
в) y=x²+2x+1 M(-1;0) x²+2x+1 = (-1)² + 2*(-1) +1 = 1 - 2 +1 = 0 точка M общая N(1;0) x²+2x+1= 1² + 2*1 + 1 = 1+ 2 + 1 = 4 ≠ 0 точка N не является общей K(2;0) x²+2x+1 = 2² + 2*2 + 1 = 4 +4+1 = 9 ≠ 0 точка K не является общей P(5;0) x²+2x+1 = 5² + 2*5 + 1 = 25 +10+1 = 36 ≠ 0 точка P не является общей
Можно поступить иначе, подставлять по очереди в рассматриваемое уравнение х-координаты точек и проверять, являются ли они корнями. (т. е. получается ли в случае подстановки верное равенство). Причем, если окажется, что мы найдем 2 общих точки, дальше можно не проверять. Больше 2-х различных общих точек не будет, ибо уравнения квадратные.
Итак по 1-му предложенному проанализируем вариант а)
Получаем 2 корня:
Сравниваем корни с х-координатами заданных точек.
Видим, что две точки "попадают" N и K.
Таким образом, для варианта а) запишем ответ:
а) N(1; 0), K(2; 0)
Вариант б) Аналогично. (Кто помнит, может теорему Виета применить для поиска корней, мы же применим стандартный вариант)
Смотрим на х-координаты, видим 2 точки.
б) M(-1; 0) P(5; 0)
Ну и вариант в) разберем методом "тыка" (перебора вариантов)
Подставляем х-координаты
Таким образом одна из предложенных точек будет общей точкой функции и координатной оси OX
в) M(-1; 0)
Тут точек немного и перебор кажется простым. Хотя и уравнения тут несложные и легко решаются аналитически. В таких случаях лучше применять 1й В случае отсутствия вещественных корней ответ очевиден уже на стадии получения дискриминанта D).
Однако в случае достаточно "навороченных" уравнений перебор может оказаться эффективнее. (А то и единственно доступным быстрым
Значит, чтобы решить задачу, нужно просто подставить координаты каждой точки в каждую формулу, задающую каждую функцию.
Если в результате получится ноль, то данная точка является общей для графика данной функции и оси Ox, если получится число отличное от нуля, то не является.
а) y=x²-3x+2
M(-1;0) x²-3x+2 = (-1)² - 3*(-1)+2 = 1+3+2 = 6 ≠ 0 точка M не является общей
N(1;0) x²-3x+2 = 1² - 3*(-1)+2 = 1-3+2 = 0 точка N общая
K(2;0) x²-3x+2 = 2² - 3*2+2 = 4 - 6+2 = 0 точка K общая
P(5;0) x²-3x+2 = 5² - 3*5+2 = 25-15+2 = 12 ≠ 0 точка P не является общей
б) y=x²-4x-5
M(-1;0) x²-4x-5 = (-1)² - 4*(-1) - 5 = 1+ 4 - 5 = 0 точка M общая
N(1;0) x²-4x-5 = 1² - 4*1 - 5 = 1- 4 - 5 = -8 ≠ 0 точка N не является общей
K(2;0) x²-4x-5 = 2² - 4*2 - 5 = 4 - 8 - 5 = -9 ≠ 0 точка K не является общей
P(5;0) x²-4x-5 = 5² - 4*5 - 5 = 25 - 20 - 5 =0 точка P общая
в) y=x²+2x+1
M(-1;0) x²+2x+1 = (-1)² + 2*(-1) +1 = 1 - 2 +1 = 0 точка M общая
N(1;0) x²+2x+1= 1² + 2*1 + 1 = 1+ 2 + 1 = 4 ≠ 0 точка N не является общей
K(2;0) x²+2x+1 = 2² + 2*2 + 1 = 4 +4+1 = 9 ≠ 0 точка K не является общей
P(5;0) x²+2x+1 = 5² + 2*5 + 1 = 25 +10+1 = 36 ≠ 0 точка P не является общей
Дальше всё решается аналогично