1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-ра
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12зница в ско
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости
Объяснение:
1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в скорости1)24:2=12(км/ч)-скорость первого спортсмена
2)24:3=8(км/ч)-скорость второго спортсмена
3)12-8=4(км/ч)-разница в ск12рости/ч)-разница в скорости
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1