Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
если их раздали по одной, то в классе 120 человек, если по 2, то 120: 2=60 человек, если по 3, то 120: 3=40 человек, если по 4, то 120: 4=30, но по условию - должно быть более 30. значит, 120 или 60 или 40. 2. рассмотрим конфеты. если 120 человек, то 280: 120=2,3 - число не натуральное, чего быть не может (конфеты ломать не будут), 120 - не подходит. если 60 человек, то, аналогично, не подходит. если 40 человек, то 280: 40=7 - конфет. подходит. 3. рассмотрим орехи. 320: 40=8 - орехов. подходит. вывод: 40 учеников в первом классе.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так