Число 10000 можно не учитывать, поэтому все числа там будут трёхзначные или четырёхзначные. С первыми всё сразу ясно: их с требуемым свойством ровно 9. Четырёхзначные числа, которые нас интересуют, имеют одну из четырёх форм: xxxa, xxax, xaxx, axxx, где x x не равно a a . Чисел вида xxxa имеется 92=81 9 2 = 81 по правилу произведения: цифру x выбираем любой, кроме нуля цифра a -- любая из десяти, кроме Легко видеть, что 81 получится и в остальных случаях по тому же принципу. Итого 9+4⋅81=333 9 + 4 ⋅ 81 = 333 .
x
не равно a
a
. Чисел вида xxxa имеется 92=81
9
2
=
81
по правилу произведения: цифру x выбираем любой, кроме нуля цифра a -- любая из десяти, кроме Легко видеть, что 81 получится и в остальных случаях по тому же принципу. Итого 9+4⋅81=333
9
+
4
⋅
81
=
333
.
вторая степень
Объяснение:
Нам нужно привести многочлен к стандартному виду, а затем указать степень многочлена: а) 3/4a^2 + 3a - a.
Чтобы привести многочлен к стандартному виду сгруппируем и приведем подобные слагаемые.
Подобными называются слагаемые содержащие одинаковую буквенную часть. У нас подобными являются 3a и -a.
Сгруппируем их и приведем.
3/4a^2 + 3a - a = 3/4a^2 + a(3 - 1) = 3/4a^2 + 2a.
Нам осталось указать степень многочлена.
Степень одночлена называется наибольшая степень одночлена, который входит в многочлен.
В нашем многочлене это вторая степень