Рассмотрим для начала f(x) = -x + 12x - 34
Производная:
f'(x) = -2x + 12
f'(x) = 0 —> x = 6 - аргумент, при котором достигается максимальное значение.
f(6) = 2
9^ (-34 + 12x - x) принимает максимальное значение, когда -34 + 12x - x максимально, то есть равно двум. Значит максимум равен 9 = 81
ответ: 81
Объяснение:
функция показательная и т.к. основание 9 больше единицы, то функция возрастает, следовательно, наибольшее значение достигается при наибольшем х.
рассмотрим степень как вторую функцию – параболу, ветви которой направлены вниз: наибольшее значение этой параболы будет в её вершине
по формуле найдем абциссу вершины –b/2а. Абцисса равна –6, следовательно оридината равна –34+12·6–36=2
следовательно наибольшее значение функции у=9 во второй степени т.е. 81
Рассмотрим для начала f(x) = -x + 12x - 34
Производная:
f'(x) = -2x + 12
f'(x) = 0 —> x = 6 - аргумент, при котором достигается максимальное значение.
f(6) = 2
9^ (-34 + 12x - x) принимает максимальное значение, когда -34 + 12x - x максимально, то есть равно двум. Значит максимум равен 9 = 81
ответ: 81
Объяснение:
функция показательная и т.к. основание 9 больше единицы, то функция возрастает, следовательно, наибольшее значение достигается при наибольшем х.
рассмотрим степень как вторую функцию – параболу, ветви которой направлены вниз: наибольшее значение этой параболы будет в её вершине
по формуле найдем абциссу вершины –b/2а. Абцисса равна –6, следовательно оридината равна –34+12·6–36=2
следовательно наибольшее значение функции у=9 во второй степени т.е. 81
2)(y - 3)(1 + b)
3) (m - 3)(3n + 5m)
4) ( c - d)(7a - 2b)
5) ( x + y)( a^2 + b^3)
6) ( a^2 + 2b^2)(x +y)
7) a(b - c) + c( b - c) = ( b - c)(a + c)
8) 2b( x - y) + ( x - y) = ( x - y)( 2b + 1)
9) 6(a - 2) - a( a - 2)= ( a - 2)(6 - a)
10) a^2( m - 2) - b( m - 2) = ( m - 2)(a^2 - b)
11) x( x - y) - y(x - y) - 3( x - y) = ( x - y)(x - y - 3)
12) a( b - 3) - ( b - 3) + b( b - 3) = ( b - 3)(a - 1 + b)
13) 5( a - b)( a - b) + (a - b)(a+ b) = (a - b)(5(a - b) + a + b) =
( a - b)(5a - 5b + a + b) = ( a - b)(6a - 4b)= 2(3a - 2b)(a - b)
14) a^3( 2 + a) + a^2(2 + a)^2 = (2 + a)(a^3 + a^2(2 + a)) = ( 2 +a)(a^3 + 2a^2 + a^3) = (2 + a)(2a^3 + 2a^2) = 2a^2(a + 1)(a + 2)